当前位置:主页 > 科技论文 > 金属论文 >

钛合金循环置氢组织与性能研究

发布时间:2017-12-28 19:16

  本文关键词:钛合金循环置氢组织与性能研究 出处:《合肥工业大学》2015年硕士论文 论文类型:学位论文


  更多相关文章: 钛合金 循环热氢处理 氢脆 第一性原理 密度泛函


【摘要】:钛合金具有比强度大、耐腐蚀性好、高温性能可靠等优点,在航空航天领域得到广泛的应用。但是钛合金室温塑性差,变形抗力较大,制约了其冷态成形的发展。因此绝大部分钛合金需要在高温下成形,对模具和成形设备要求较高,加大了制造成本,限制了钛合金的应用。钛合金的热氢处理技术,把氢当作临时合金化元素,借助氢致相变、氢致塑性、可逆合金化等特性来改变钛合金的热加工性能。但是热氢处理技术主要集中于单一道次的置氢处理,而关于多道次的循环热氢处理研究在国内外尚属空白。本文对Ti6Al4V合金进行多道次循环置氢处理,利用金相显微镜、X射线衍射仪、热重分析仪等手段,结合室温压缩试验,对循环热氢钛合金的显微组织和力学性能进行了系统研究。利用M-200型摩擦磨损试验机对不同氢含量的Ti6Al4V合金进行摩擦磨损试验,以研究氢含量对钛合金摩擦磨损性能的影响规律。采用第一性原理方法构建了不同氢浓度的aTi-H晶体体系,研究了不同氢含量下,aTi-H体系的结构、能量、能带结构、电子态密度的变化规律。试验结果表明:一道次置氢钛合金极限变形率增加了17.67%,室温塑性的增强得益于钛合金内β相的增多。而多道次循环置氢导致钛合金发生氢脆,促进了组织内氢化物的生成,并且伴随着置氢次数的增加,针状α马氏体的数量减少,α”马氏体增多。压缩后的循环置氢试样晶粒弯曲并得到一定程度细化,α”体积分数增大,未发现剪切带的形成。氢使钛合金的摩擦系数降低,但是氢含量对Ti6Al4V合金摩擦系数的影响不明显。随氢含量的增加,钛合金的耐磨性能逐渐变差。随着氢含量的增加,钛合金的氧化磨损特征逐渐变弱,磨粒磨损所起的作用逐渐增强。Ti-H晶胞的体积和体积膨胀率随着氢含量的升高而增大,发生了晶格畸变,晶胞结构不稳定,更易生成钛氢化合物。晶胞的稳态能量和杂质形成能随着氢含量的增大而减小。纯Ti晶体的能带结构图表现出典型的金属导体能带特质,能带在费米能级的周围密集分布,具有典型的金属性。置氢后钛原子之间的部分成键力降低,存在弱键效应。
[Abstract]:Titanium alloy has many advantages, such as large specific strength, good corrosion resistance, reliable high temperature performance and so on. It has been widely used in the field of aerospace. However, the plasticity of the titanium alloy at room temperature is poor and the deformation resistance is large, which restricts the development of cold forming. Therefore, most of the titanium alloy needs to be formed at high temperature, higher requirements for mould and forming equipment, increased manufacturing cost, and restricted the application of titanium alloy. The hot hydrogen treatment technology of titanium alloy takes hydrogen as a temporary alloying element, and changes the hot working property of titanium alloy by virtue of hydrogen transformation, hydrogen induced plasticity and reversible alloying. However, the thermal hydrogen treatment technology is mainly concentrated on the single channel hydrogen treatment, and the study of multipass cyclic hydrogen treatment is still blank at home and abroad. In this paper, Ti6Al4V alloy was treated by multi pass cycle hydrogen treatment. The microstructure and mechanical properties of the recycled hot hydrogen titanium alloy were systematically studied by means of metallographic microscope, X ray diffractometer, thermogravimetric analyzer and room temperature compression test. The friction and wear tests of Ti6Al4V alloy with different hydrogen content were carried out by using M-200 friction and wear tester to study the effect of hydrogen content on the friction and wear properties of titanium alloy. The aTi-H crystal system with different hydrogen concentration was constructed by first principles method. The structure, energy, band structure and electronic state density of aTi-H system under different hydrogen content were studied. The experimental results show that the ultimate deformation rate of a secondary hydrogen titanium alloy increases by 17.67%, and the increase of the plastic properties at room temperature is due to the increase of the beta phase in the titanium alloy. However, the hydrogen embrittlement of titanium alloy is promoted by multipass cycle hydrogenation, and the formation of hydrides is promoted. With the increase of hydrogenation times, the number of needle like alpha martensite decreases and the "alpha" martensite increases. The grain size of the specimen after compression is refined to a certain extent, and the volume fraction of alpha increases, and the formation of the shear band is not found. The friction coefficient of the titanium alloy is reduced by hydrogen, but the effect of hydrogen content on the friction coefficient of Ti6Al4V alloy is not obvious. With the increase of hydrogen content, the wear resistance of the titanium alloy gradually decreases. With the increase of hydrogen content, the oxidation wear characteristics of the titanium alloy gradually become weaker, and the effect of abrasive wear is gradually enhanced. The volume and volume expansion rate of the Ti-H cell increases with the increase of hydrogen content, and the lattice distortion occurs, the structure of the cell is unstable, and the titanium hydride is more easily generated. The steady state energy and impurity formation energy of the cell decrease with the increase of hydrogen content. The band structure diagram of pure Ti crystal shows typical metal conductor band characteristics, which can be closely distributed around the Fermi level and has typical metallicity. The bonding force between the titanium atoms is reduced and the weak bond effect exists after hydrogen placement.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG146.23

【相似文献】

相关期刊论文 前10条

1 何林;何旭;房勇;曾明凤;唐明杰;薛学东;;压力及缺陷对蓝宝石电子结构影响的第一性原理研究[J];四川理工学院学报(自然科学版);2010年04期

2 于洋,徐力方,顾长志;氢吸附金刚石(001)表面的第一性原理研究[J];物理学报;2004年08期

3 李淼泉;姚晓燕;;置氢α-钛和β-钛晶体结构的第一性原理研究[J];稀有金属材料与工程;2013年03期

4 李英德;分子和金表面相互作用的第一性原理研究[J];潍坊学院学报;2002年06期

5 宫长伟;王轶农;杨大智;;NiTi形状记忆合金马氏体相变的第一性原理研究[J];物理学报;2006年06期

6 于海林;;氮化银结构特性的第一性原理研究[J];常熟理工学院学报;2007年04期

7 朱佳;林红;朱春城;柏跃磊;;Ti_2AlC热力学性能的第一性原理研究[J];稀有金属材料与工程;2013年S1期

8 阮林伟;朱玉俊;裘灵光;卢运祥;;C_3N_4基本性质的第一性原理研究[J];安徽大学学报(自然科学版);2013年06期

9 付召明;王明阳;张岩星;张娜;杨宗献;;第一性原理研究由金属镍和钇稳定的氧化锆所形成的三相边界微观结构(英文)[J];物理化学学报;2014年06期

10 刘博;王煊军;卜晓宇;;高氯酸铵电子结构第一性原理研究[J];火炸药学报;2014年04期

相关会议论文 前10条

1 姜晓庶;Walter R.L.Lambrecht;;半导体非线性光学材料的第一性原理研究[A];第六届中国功能材料及其应用学术会议论文集(1)[C];2007年

2 郑晓;陈冠华;;开放电子体系的第一性原理方法[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年

3 宋庆功;褚勇;王艳波;耿德平;郭艳蕊;;有序α-(Al_(1/4)Cr_(3/4))_2O_3的结构及其稳定性研究[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年

4 孙学勤;周树兰;林娜;李良;张玉芬;赵显;;关于金刚石的硬度的第一性原理研究[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年

5 周安;舒翠翠;刘立胜;翟鹏程;;双填充方钴矿电子结构和电传输性能的第一性原理研究[A];2011中国材料研讨会论文摘要集[C];2011年

6 曾凡林;孙毅;;PVDF单链拉伸的第一性原理模拟[A];第七届海峡两岸工程力学研讨会论文摘要集[C];2011年

7 潘红亮;王月花;;铁酸铋光学特性的第一性原理研究[A];《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集[C];2007年

8 平飞林;蒋刚;张林;朱正和;;~3He对LaNi_5储氚性能影响的第一性原理研究[A];第八届全国核靶技术学术交流会论文摘要集[C];2004年

9 周士芸;谢泉;闫万s,

本文编号:1347095


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1347095.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户72e57***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com