基于多目标粒子群的数控机床维修调度决策支持系统研究
发布时间:2018-02-21 18:38
本文关键词: 多目标粒子群 维修调度 数控机床 决策支持 出处:《武汉科技大学》2015年硕士论文 论文类型:学位论文
【摘要】:随着制造技术的飞速发展,数控机床作为当代机械制造业的主流设备,其结构日趋复杂,自动化、智能化水平逐渐提高,使得其维修工作变得日益复杂和繁重。如何在减少影响生产的情况下,快速决策出有效的数控机床维修调度方案,使企业综合效益最大化,具有重要的现实意义。论文以数控机床维修调度为研究对象,利用多目标粒子群算法、偏好信息、维修调度等知识,完成了数控机床维修调度模型的构建、架构分析、实例分析求解、系统设计等工作,主要工作如下: (1)数控机床维修调度故障知识采集。对某维检中心的数据调研情况进行总结,从数控机床故障分类、常见故障及排除、维修工时定额三个方面介绍了数控机床维修调度知识的来源,为后面的数控机床维修调度决策提供知识资源。 (2)数控机床维修调度模型构建。以数控机床维修调度为对象,根据实际生产情况和提高数控机床维修效率的要求,综合运用数控机床故障维修知识、调度理论与方法,构建了基于时间和成本的双目标数控机床维修调度模型。在前人维修调度问题的基础上,新增了工人技术水平影响因子,建立了更适合企业实际的维修调度模型。 (3)数控机床维修调度模型求解算法确定。分析维修调度问题的目标、约束条件等,确定了基于后验偏好信息的满意解优选方法。仿真结果与原有稀缺度维修调度法相比,取得了较好的优化效果,为维修调度方案选择提供可靠依据。 (4)维修调度决策支持系统的设计与实现。采用B/S架构,以Java开发语言,基于Extjs4.0、Struts2、Hibernate、Spring等,,开发了数控机床维修调度决策支持原型系统。系统主要包括用户管理、机床运行与维修管理、决策支持系统管理、机床维修调度决策等模块。
[Abstract]:With the rapid development of manufacturing technology, CNC machine tools, as the mainstream equipment in the contemporary mechanical manufacturing industry, are becoming more and more complex, and the level of automation and intelligence is gradually improving. The maintenance work becomes more and more complex and heavy. How to make the effective maintenance and scheduling scheme of NC machine tool quickly under the condition of reducing the influence on production, so as to maximize the comprehensive benefit of the enterprise. This paper takes the maintenance scheduling of CNC machine tools as the research object, using the knowledge of multi-objective particle swarm optimization, preference information, maintenance scheduling and so on, completes the construction and architecture analysis of the maintenance scheduling model of NC machine tools. Example analysis and solution, system design and other work, the main work is as follows:. 1) acquisition of fault knowledge in maintenance and dispatching of NC machine tools. The data investigation and investigation of a maintenance inspection center are summarized, and the classification, common faults and troubleshooting of NC machine tools are summarized. This paper introduces the source of NC machine tool maintenance scheduling knowledge from three aspects of maintenance man-hour quota, and provides knowledge resources for NC machine tool maintenance scheduling decision. (2) Construction of NC machine tool maintenance scheduling model. Taking NC machine tool maintenance scheduling as an object, according to the actual production situation and the requirement of improving NC machine tool maintenance efficiency, this paper synthetically applies NC machine tool fault maintenance knowledge, scheduling theory and method. Based on the previous maintenance and scheduling problems, the maintenance scheduling model of double-objective NC machine tools based on time and cost is established. Based on the former maintenance scheduling problems, the influence factors of workers' technical level are added, and a maintenance scheduling model is established, which is more suitable for enterprises. 3) the algorithm for solving the maintenance scheduling model of NC machine tools is determined. The objectives and constraints of the maintenance scheduling problem are analyzed, and the satisfactory optimization method based on the posteriori preference information is determined. The simulation results are compared with the original scarcity degree maintenance scheduling method. Good optimization results are obtained and reliable basis is provided for the selection of maintenance scheduling scheme. 4) the design and implementation of maintenance scheduling decision support system. Based on Extjs4.0 Struts2hibernateSpring and Java development language, a decision support system for maintenance scheduling of NC machine tools is developed. The system mainly includes user management, machine tool operation and maintenance management, etc. Decision support system management, machine tool maintenance scheduling decision-making module.
【学位授予单位】:武汉科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG659
【参考文献】
相关期刊论文 前10条
1 侯磊;;基于多目标粒子群算法的船舶主尺度优化设计研究[J];船舶力学;2011年07期
2 李红良;;智能决策支持系统的发展现状及应用展望[J];重庆工学院学报(自然科学版);2009年10期
3 王宪;张方生;慕鑫;柳絮青;郭玉凡;;基于多目标粒子群算法的多传感器图像融合[J];光电工程;2012年06期
4 赖建峰;林永怡;;浅谈服务器集群技术在数字化校园中的应用[J];硅谷;2011年09期
5 巩敦卫;王更星;孙晓燕;;高维多目标优化问题融入决策者偏好的集合进化优化方法[J];电子学报;2014年05期
6 田雨波;楼群;邱大为;;多目标神经空间映射算法优化设计微带滤波器[J];电子学报;2014年05期
7 胡丹丹;陈宁江;朱莉蓉;谭瑛;李湘;;云基础设施利润驱动的多目标虚拟机资源调度[J];广西大学学报(自然科学版);2014年03期
8 吕学志;陈乐;尹健;范保新;;考虑休息的维修任务调度模型及其求解算法[J];兵工学报;2014年12期
9 张爽;马慧民;马良;许圣良;;半导体制造设备预维修调度的知识进化算法研究[J];计算机应用研究;2011年06期
10 任永昌;巫奎彦;王娟;;基于时间测定法的工时定额标准化研究[J];价值工程;2010年19期
本文编号:1522576
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1522576.html
教材专著