小口径非球面斜轴磁流变抛光关键技术研究
本文选题:小口径非球面 + 斜轴 ; 参考:《湖南大学》2015年博士论文
【摘要】:近年来,随着高性能非球面光学产品在航空航天、光电通讯、武器装备等领域的广泛应用,小口径非球面光学零件的需求量持续增长,其精度要求也日益提高。小口径非球面常采用超精密车削和磨削进行加工,但是车削和磨削会在加工表面残留加工痕迹和加工缺陷,因此需要后续的超精密抛光来提高表面质量。由于小口径非球面狭小的加工空间和高质量的光学表面要求,采用传统的抛光方法难以加工。针对上述问题,本文将磁流变抛光方法引入到小口径非球面抛光中,并结合小口径非球面的加工特点,研究出适合小口径非球面加工的斜轴磁流变抛光技术。同时将其与传统的超精密车削和磨削相结合,形成超精密车削与斜轴磁流变抛光以及超精密磨削与斜轴磁流变抛光两种组合加工工艺,实现对小口径非球面的高效、高精加工。 本文的研究工作主要包括以下内容: 分析了小口径非球面的特征和应用需求,,综述小口径非球面超精密车削、磨削、抛光的现状,探讨目前小口径非球面超精密抛光加工中存在的问题,并提出相应的解决措施。 提出了小口径非球面斜轴磁流变抛光方法,分析其加工原理,并建立加工路径控制数学模型,探讨小口径非球面抛光过程中的曲率干涉和刀杆干涉问题,并建立抛光过程中的几何干涉数学模型。研究斜轴磁流变抛光去除机理,分析流体动压力、磁化压力等参数对抛光的影响,并建立斜轴磁流变抛光去除数学模型。为小口径非球面斜轴磁流变抛光工艺的应用提供理论基础。 研制了小口径非球面斜轴磁流变抛光装置,并对斜轴磁流变抛光头内部励磁磁场进行有限元仿真分析。试验研究了抛光头的去除性能以及加工区域的磁场大小。为小口径非球面斜轴磁流变抛光的实现提供切实可行的加工装置。 分析了磁流体、磁流变液、复合磁流体等三种磁性抛光液的稳定性、成链性、粘性、抛光性能等基本性能,配置出兼具高稳定性和高剪切去除特性的复合磁流体。试验分析基于纳米金刚石和微米氧化铈复合磨粒的磁流变抛光性能。为非球面斜轴磁流变抛光的实现提供性能优良的抛光液。 将小口径非球面的超精密车削、磨削与斜轴磁流变抛光有机结合,研制了超精密车削与斜轴磁流变抛光以及超精密磨削与斜轴磁流变抛光两种组合加工工艺和装置,并对碳化钨和不锈钢小口径非球面分别进行了试验研究。
[Abstract]:In recent years, with the wide application of high performance aspheric optical products in aerospace, optoelectronic communication, weapon equipment and other fields, the demand for small aperture aspheric optical parts has been increasing continuously, and its precision requirements are also increasing day by day.The small diameter aspherical surface is usually machined by ultra-precision turning and grinding, but turning and grinding will leave traces and defects on the machined surface, so it is necessary to improve the surface quality by subsequent ultra-precision polishing.Because of the narrow machining space of small aperture aspherical surface and the requirement of high quality optical surface, it is difficult to process by traditional polishing method.Aiming at the above problems, the magneto-rheological polishing method is introduced into the small-aperture aspheric surface polishing, and combining with the processing characteristics of the small-aperture aspheric surface, the inclined axis magneto-rheological polishing technology suitable for the small aperture aspheric surface processing is studied.At the same time, it is combined with traditional ultra-precision turning and grinding to form ultra-precision turning and inclined axis magnetorheological polishing and ultra-precision grinding and inclined axis magnetorheological polishing to realize the high-efficient and high-precision machining of small aperture aspherical surface.The research work of this paper mainly includes the following contents:The characteristics and application requirements of small aperture aspheric surface are analyzed. The present situation of ultra-precision turning, grinding and polishing of small aperture aspheric surface is summarized. The problems existing in the machining of small aperture aspheric surface are discussed, and the corresponding solutions are put forward.This paper presents a method of small aperture aspheric oblique axis magnetorheological polishing, analyzes its machining principle, establishes a mathematical model of machining path control, and discusses the curvature interference and tool rod interference in the process of small aperture aspheric surface polishing.A mathematical model of geometric interference in polishing process is established.The removal mechanism of oblique axis magnetorheological polishing (MRF) was studied and the influence of hydrodynamic pressure and magnetization pressure on the polishing was analyzed.It provides a theoretical basis for the application of small aperture aspheric oblique axis magnetorheological polishing technology.The small diameter aspheric oblique axis magnetorheological polishing device was developed and the finite element simulation analysis of the internal excitation magnetic field of the inclined axis magnetorheological polishing head was carried out.The removal performance of the polishing head and the magnetic field of the processing area were studied.It provides a feasible processing device for the realization of small diameter aspheric oblique axis magnetorheological polishing.The stability, chainness, viscosity and polishing performance of three kinds of magnetic polishing fluids, such as magnetic fluid, magnetorheological fluid and composite magnetic fluid, are analyzed. The composite magnetic fluids with high stability and high shear removal characteristics are configured.The magnetorheological polishing properties of nano-diamond and micron cerium oxide composite abrasive particles were analyzed.It provides an excellent polishing liquid for the realization of aspheric oblique axis magnetorheological polishing.The ultra-precision turning, grinding and inclined axis magnetorheological polishing of small aperture aspherical surface are organically combined, and two kinds of combined processing techniques and devices are developed, such as ultra-precision turning and inclined axis magnetorheological polishing and ultra-precision grinding and inclined axis magnetorheological polishing.The small diameter aspherical surface of tungsten carbide and stainless steel were tested.
【学位授予单位】:湖南大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG580.692
【参考文献】
相关期刊论文 前10条
1 孙希威;张飞虎;董申;栾殿荣;;磁流变抛光光学曲面的两级插补算法[J];光电工程;2006年02期
2 陈丹,阮昊,赵晓枫,赵春梅,何慧灵;用于DVD光学成像系统的非球面透镜设计[J];光电子·激光;2004年10期
3 彭小强,戴一帆,李圣怡,尤伟伟;回转对称非球面光学零件磁流变成形抛光的驻留时间算法[J];国防科技大学学报;2004年03期
4 彭小强;尤伟伟;石峰;;磁流变液剪切屈服应力模型的理论分析与实验[J];国防科技大学学报;2006年04期
5 宋辞;彭小强;戴一帆;石峰;;基于去除函数预测模型的磁流变抛光工艺优化研究[J];国防科技大学学报;2009年04期
6 袁哲俊;;精密和超精密加工技术的新进展[J];工具技术;2006年03期
7 张峰,潘守甫,张学军,张忠玉,郑立功,程灏波,牛海燕;磁流变抛光液的研制[J];功能材料;2002年05期
8 陈琳;龚兴龙;江万权;张培强;;增塑剂对磁流变弹性体磁流变效应的影响[J];功能材料;2006年05期
9 李海涛;彭向和;陈伟民;;磁流变液流变特性的数值模拟分析[J];功能材料;2006年05期
10 司鹄;李晓红;;磁流变液的流体动力学理论[J];功能材料;2006年05期
相关博士学位论文 前3条
1 王卓;光学材料加工亚表面损伤检测及控制关键技术研究[D];国防科学技术大学;2008年
2 陈逢军;非球面超精密在位测量与误差补偿磨削及抛光技术研究[D];湖南大学;2010年
3 王宇;基于B轴控制的微小非球面超精密固定点车削与磨削研究[D];湖南大学;2012年
本文编号:1766446
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1766446.html