基于加工中心加工弧齿锥齿轮的齿面修形技术
发布时间:2018-04-23 16:06
本文选题:弧齿锥齿轮 + 修形 ; 参考:《河南科技大学》2015年硕士论文
【摘要】:弧齿锥齿轮的切齿过去一直在专用铣齿机或磨齿机上进行,齿面接触区修正通过调整机床加工参数实现。由于弧齿锥齿轮的几何特性与啮合过程复杂,各加工参数相互耦合、综合对齿面接触状况产生影响,需反复试切并滚动检查齿面接触状况,因此获得一套能保证良好接触质量的加工参数非常困难。随着高速切削技术急速发展及其在加工中心上的应用,在加工中心上对螺旋锥齿轮切齿已经成为现实,可以解决一些大型锥齿轮无法在专用机床上加工的难题。然而现有齿面修形技术局限于专用铣齿机,因此建立一套基于加工中心加工弧齿锥齿轮的齿面修形理论很有必要。本文以成形法高效加工大轮为基础,提出一种在共轭基础上量化修形小轮齿面的理论,通过曲面拟合理论对修形后的小轮目标齿面进行高精度拟合,进而进行轮齿接触分析,探索改变修形参数设置对齿面啮合性能的影响。本文研究内容主要是:1基于大轮成形法加工方式,建立大轮的齿面方程。根据齿轮啮合原理,在分析齿轮副啮合坐标系的基础上,推导出完全共轭的小轮理论齿面方程。2运用旋转投影原理,对小轮齿面进行网格划分,建立起三维齿面坐标与二维网格坐标之间的关系,求解出小轮齿面的离散点数据;在网格数据的基础上运用差曲面方程构建出小轮目标齿面与共轭齿面之间的偏差,完成对完全共轭小轮齿面的修形计算,获得修形后小轮齿面的网格离散点数据。3运用双三次NURBS曲面拟合方法对小轮修形齿面的离散点进行高精度的拟合,得到小轮的数字化齿面方程,并且对拟合的齿面精度进行分析;对大轮理论齿面与小轮数字化齿面进行齿面接触分析(TCA),得到齿轮副的传动误差与接触印痕,验证对完全共轭小轮修形设计的可行性。探究齿廓鼓形量修形与齿长鼓形量修形对TCA结果的影响。4通过将计算得到的齿面点数据导入三维软件中,观察修形前与修形后接触区的变化,探讨修形理论的可行性。以小轮齿数8,大轮齿数37的一对齿轮副为例,用本文提出的修形理论对小轮进行修形计算,得到修形后的小轮离散点后,将其导入三维软件生成实体,在加工中心上编制程序对小轮进行加工实验,并与大轮进行滚动检验,观察到的齿面接触区与TCA结果基本一致,证明了本文提出的TCA方法的正确性。
[Abstract]:The tooth cutting of arc bevel gear has been carried out in special milling machine or grinding machine in the past, and the tooth surface contact area correction is realized by adjusting the machining parameters of the machine tool. Due to the complexity of geometric characteristics and meshing process of spiral bevel gear, the machining parameters are coupled with each other, which has a comprehensive effect on the tooth surface contact, so it is necessary to test the tooth surface contact condition repeatedly and to check the tooth surface contact condition by rolling. Therefore, it is very difficult to obtain a set of processing parameters which can guarantee good contact quality. With the rapid development of high speed cutting technology and its application in machining center, the cutting of spiral bevel gear in machining center has become a reality, which can solve the problem that some large bevel gears can not be machined on special machine tools. However, the existing tooth surface modification technology is limited to special milling machine, so it is necessary to establish a set of tooth surface modification theory based on machining center arc bevel gear. Based on the high efficiency machining of large wheel by forming method, this paper puts forward a theory of quantifying the tooth surface of small wheel on the basis of conjugate. The surface of the modified gear is fitted with high precision through the theory of surface fitting, and then the gear tooth contact analysis is carried out. To explore the effect of changing the profile modification parameters on the meshing performance of tooth surface. The main research content of this paper is to establish the tooth surface equation of big wheel based on the forming method of big wheel. According to the principle of gear meshing and on the basis of analyzing the meshing coordinate system of gear pair, a completely conjugate theoretical tooth surface equation of small wheel is derived. 2. By using the principle of rotating projection, the tooth surface of small wheel is meshed. The relationship between 3D tooth surface coordinates and two-dimensional grid coordinates is established to solve the discrete point data of the gear tooth surface, and the deviation between the small gear tooth surface and the conjugate tooth surface is constructed by using the difference surface equation based on the grid data. The modification calculation of the tooth surface of the complete conjugate small wheel is completed, and the mesh discrete point data of the modified gear tooth surface are obtained. 3. The discrete points of the modified gear tooth surface are fitted with high precision by using the double cubic NURBS surface fitting method. The digital tooth surface equation of the small wheel is obtained, and the accuracy of the fitting tooth surface is analyzed, and the tooth surface contact analysis of the large wheel theoretical tooth surface and the small wheel digital tooth surface is carried out, and the transmission error and the contact mark of the gear pair are obtained. Verify the feasibility of complete conjugate wheel modification design. The influence of tooth profile profile modification and tooth length drum shape modification on TCA results. 4. By importing the calculated tooth surface data into 3D software, the change of contact area before and after modification is observed, and the feasibility of modification theory is discussed. Taking a pair of gear pairs with small gear tooth number 8 and large gear tooth number 37 as an example, the modification theory proposed in this paper is used to calculate the shape modification of the small wheel. After the discrete point of the modified wheel is obtained, it is introduced into the 3D software to generate the entity. In the machining center, a program is compiled to carry out machining experiments on the small wheel, and a rolling inspection is carried out with the large wheel. The observed contact area of the tooth surface is basically consistent with the results of TCA, which proves the correctness of the TCA method proposed in this paper.
【学位授予单位】:河南科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG61
【参考文献】
相关期刊论文 前4条
1 王延忠,周云飞,李左章,李小清;螺旋锥齿轮空间曲面NC加工插补误差分析[J];华中科技大学学报(自然科学版);2002年02期
2 吴序堂;;准双曲面齿轮的变性全展成加工法原理(下)[J];齿轮;1984年03期
3 许有信,李宗民,程少华;利用NURB作曲线和曲面的插值[J];南京航空航天大学学报;1994年02期
4 曹雪梅;邓效忠;聂少武;;基于共轭齿面修正的航空弧齿锥齿轮高阶传动误差齿面拓扑结构设计[J];航空动力学报;2015年01期
,本文编号:1792668
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1792668.html
教材专著