螺旋锥齿轮数控加工及精度控制关键技术研究
本文选题:螺旋锥齿轮 + 数控加工 ; 参考:《合肥工业大学》2015年博士论文
【摘要】:齿轮的加工质量和加工效率在很大程度上反映了一个国家的机械工业水平。随着科学技术的发展,装备水平的提高,对齿轮传动产品的要求也越来越高。螺旋锥齿轮是传递交错动力的基础元件,因其形状复杂,技术问题多,制造难度大,一直以来深为业界所重视。目前国内螺旋锥齿轮加工所用的机床,其数控系统大多是国外的数控系统,如德国的SIEMENS、日本的FANUC和PHILIPS公司的3460系统,或者是在通用数控系统(如西门子840D)基础上进行二次开发来实现的,而将齿轮加工的相关技术嵌入到数控系统中,其专用性缺乏,可扩展性不强。为了提高齿轮的加工精度,传动性能,就应从源头开始即机床母机的大脑-数控系统出发,开发属于专业化的齿轮数控系统而不依赖于国外的数控系统。因此,本文提出了一种嵌入式的螺旋锥齿轮加工数控系统,进行了软件和硬件的设计开发,为了进一步提高螺旋锥齿轮数控加工的精度,开展了如下研究:1.通过对传统摇台式螺旋锥齿轮加工原理以及数控式加工机床的对比分析和研究,剖析了格里森制齿的大轮展成法加工、成形法加工,小轮刀倾法加工、变性法加工等四种切齿加工方法,应用空间坐标变换,分别推导出螺旋锥齿轮上述四种加工方法的数控加工模型。2.研究了刀具误差对齿面精度的影响,从盘形刀具的齿形角和刀盘半径出发,在不考虑机床运动精度情况下,推导出了刀具半径偏差与齿轮齿廓误差之间的定量映射关系模型以及刀具齿形角偏差与齿轮齿廓误差之间的定量映射关系模型;并对刀具半径偏差和刀具齿形角偏差对齿面的影响进行了仿真模拟。为了减小刀盘偏差所带来的齿面加工精度的下降,在开发螺旋锥齿轮数控系统时设计了刀具半径误差补偿量,并推导出其计算公式,并对该刀具半径误差补偿量进行了仿真模拟验证,既验证螺旋锥齿轮数控加工数学模型的正确性也说明了刀具误差补偿模型可有效提高螺旋锥齿轮数控加工的表面加工精度。3.根据所推导出的螺旋锥齿轮大轮展成法加工、小轮刀倾法加工、小轮变性法加工对多轴联动的不同要求,分别构建相应的电子齿轮箱结构模型。结合螺旋锥齿轮加工过程中刀具运动轨迹的特点,将交叉耦合控制模型应用在有联动要求的进给轴之间,建立其交叉耦合补偿模型,并进行了实验验证,其结果显示交叉耦合控制模型的有效性。4.为了提高螺旋锥齿轮数控机床的加工精度,在分析螺旋锥齿轮数控机床运动特点的基础上,建立了其运动模型,推导出了刀具与工件间的坐标转换关系式。接着基于多体系统理论对螺旋锥齿轮数控机床的拓扑结构进行了描述,对螺旋锥齿轮数控机床的基坐标系和各局部坐标系进行了设定,并结合机床误差运动学原理,推导出了用齐次变换矩阵描述的误差模型。针对误差补偿运动与误差模型(位姿误差)间存在的耦合关系,基于小误差补偿运动假设和微分变换原理,并结合螺旋锥齿轮数控加工的展成法加工电子展成的关系对误差补偿运动进行了解耦,获得了影响螺旋锥齿轮数控加工精度的各运动副的位置或方向误差补偿量。5.在嵌入式多CPU数控系统硬件平台的基础上,采用模块化思想,设计了数控系统软件总体架构,并对螺旋锥齿轮数控加工自动编程系统进行了设计,对螺旋锥齿轮数控加工自动编程系统的工作原理以及自动编程系统进行功能需求分析,并在此基础上提出系统架构,包括输入模块、输出模块、自动编程模块、系统参数设置模块、通信模块等等。详细剖析了数控系统软件内部的信息流向,为了实现螺旋锥齿轮数控的展成加工,将电子齿轮箱无缝隙地嵌入在齿轮加工数控系统中。分析并研究了电子齿轮箱打开与关闭瞬间速度的处理策略,避免电子齿轮箱突然开启或关闭时对跟随轴产生的速度突变。在自行开发的嵌入式齿轮加工数控系统中实现了电子齿轮箱的NC控制,通过程序运行实验数据与理论计算数据的对比分析,说明了电子齿轮箱软件执行的正确性。6.对自行开发的嵌入式螺旋锥齿轮数控系统进行通过程序运行实验数据与计算数据对比,说明该软件执行的正确性。将所设计开发包含电子齿轮箱控制模型的螺旋锥齿轮数控系统,在六轴实验平台上分别进行展成法加工和变性法加工的运动控制实验,并对实验结果进行定量分析和比较,证明本文所提出的螺旋锥齿轮的数控加工的控制结构和实现方式具有较好的可控性。
[Abstract]:The machining quality and processing efficiency of the gear to a great extent reflect the level of the machinery industry in a country. With the development of science and technology and the improvement of the equipment level, the demand for gear transmission products is becoming higher and higher. The spiral bevel gear is the basic element to transfer the staggered power, because its shape is complex, the technical problems are many, and the manufacturing difficulty is great. At present, the CNC systems used in domestic spiral bevel gear machining are mostly CNC systems abroad, such as the SIEMENS of Germany, the 3460 systems of FANUC and PHILIPS in Japan, or the two development on the basis of the universal numerical control system (such as SIEMENS 840D), and the gear processing. In order to improve the machining accuracy and transmission performance of the gear, it should start from the source of the machine tool machine, which is a specialized gear CNC system without relying on the foreign numerical control system. Therefore, this paper puts forward a kind of embedded system. The numerical control system of spiral bevel gear machining is designed and developed. In order to further improve the precision of spiral bevel gear NC machining, the following research is carried out. 1. through the comparative analysis and Research on the machining principle of the traditional spiral bevel gear and the CNC machine tool, the Gleason tooth making is analyzed. Four kinds of cutting methods, such as large wheel expansion, forming method, small wheel knife tilting and denaturing processing, are used to deduce the numerical control model.2. of four kinds of spiral bevel gear machining methods, respectively. The influence of tool error on the tooth surface accuracy is studied, from the tooth angle of the disc cutter and the radius of the cutter disk. The quantitative mapping relation model between the tool radius deviation and the gear profile error, and the quantitative mapping relation model between the cutter tooth profile deviation and the gear profile error are derived without considering the motion accuracy of the machine tool, and the influence of the tool radius deviation and the tooth profile deviation on the tooth surface is simulated. In order to reduce the reduction of the machining precision of the tooth surface caused by the deviation of the cutter disk, the error compensation amount of the tool radius is designed in the development of the spiral bevel gear NC system, and its calculation formula is derived. The simulation verification is carried out on the error compensation of the tool radius error, and the correctness of the mathematical model of the spiral bevel gear NC machining is also verified. It is clear that the tool error compensation model can effectively improve the surface machining precision of the spiral bevel gear NC machining,.3. based on the spiral bevel gear large wheel spreading method, the small wheel cutter tilting method, the small wheel denaturation method for the different requirements of multi axis linkage, and the construction of the corresponding structural model of the electronic gear box. In the process of machining, the cross coupling control model is applied to the feed shaft with linkage requirements, and the cross coupling compensation model is established. The results show that the effectiveness of the cross coupling control model.4. is to improve the machining precision of the spiral bevel gear NC machine tool and analyze the spiral cone. On the basis of the motion characteristics of the gear NC machine tool, the motion model is established, and the coordinate transformation relation between the tool and the workpiece is deduced. Then the topology of the spiral bevel gear NC machine tool is described based on the multibody system theory, and the basic coordinate system and the local coordinate system of the spiral bevel gear NC machine tool are set. Based on the kinematic principle of machine tool error, the error model described by the homogeneous transformation matrix is derived. The coupling relationship between the error compensation motion and the error model (position and posture error) is based on the motion hypothesis of small error compensation and the principle of differential transformation, and the relationship of the electronic spreading of the spiral cone gear NC machining is combined. On the basis of the embedded multi CPU CNC system hardware platform, the total frame of the CNC system software is designed on the basis of the hardware platform of the embedded multi CPU CNC system, and the automatic programming of the spiral bevel gear NC machining is made by the understanding coupling of the error compensation movement. The system is designed, the working principle of the automatic programming system of spiral bevel gear NC machining and the functional requirement analysis of the automatic programming system are analyzed. On this basis, the system architecture is put forward, including input module, output module, automatic programming module, system parameter setting block, communication module and so on. The software of numerical control system is analyzed in detail. In order to realize the numerical control of spiral bevel gear numerical control, the electronic gear box is embedded in the CNC system of gear processing. The processing strategy of the speed of the opening and closing of the electronic gear box is analyzed and studied to avoid the sudden change of the speed of the following shaft when the electronic gear box is suddenly opened or closed. The NC control of the electronic gear box is realized in the embedded gear machining numerical control system developed by the bank. Through the comparison and analysis of the experimental data and the theoretical calculation data, the correctness of the software implementation of the electronic gear box is explained by.6.. The experimental data and the calculation of the program operation of the self developed embedded spiral bevel gear NC system are carried out. Comparison of the data shows the correctness of the software implementation. The design and development of the spiral bevel gear CNC system containing the control model of the electronic gear box is designed and developed on the six axis experimental platform. The experimental results are analyzed and compared with the results of the experiment, which proves the helix proposed in this paper. The control structure and implementation mode of the NC machining of bevel gears have better controllability.
【学位授予单位】:合肥工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG61
【相似文献】
相关期刊论文 前10条
1 白秀芳,刘敏;螺旋锥齿轮等高齿制的加工和安装调整[J];中国科技信息;2005年09期
2 马浚川;;现代小型企业对螺旋锥齿轮的简化计算及加工探析[J];机电信息;2012年27期
3 张海波;刘国栋;程雷;;螺旋锥齿轮逆向造型研究[J];制造技术与机床;2013年03期
4 肖庆博 ,周应虎;加工大型螺旋锥齿轮的新方法[J];机床;1983年12期
5 蒋毓忠;;螺旋锥齿轮多品种小量生产加工方法的探讨[J];二汽科技;1983年01期
6 梁桂明;;高品质螺旋锥齿轮的优化设计[J];机械制造;1989年11期
7 冯忆艰;克林贝格螺旋锥齿轮的诱导法曲率[J];淮南矿业学院学报;1996年02期
8 张国政;;螺旋锥齿轮数控铣削精加工方法研究[J];重庆科技学院学报(自然科学版);2014年02期
9 季春香;螺旋锥齿轮加工中的微分学应用[J];青海大学学报(自然科学版);2002年01期
10 吕晓红,廖忠;KЦ_2-1000型减速机螺旋锥齿轮计算及参数分析[J];包钢科技;2004年05期
相关会议论文 前7条
1 任东锋;方宗德;魏冰阳;;螺旋锥齿轮远程设计分析服务系统开发与研究[A];全国生产工程第九届年会暨第四届青年科技工作者学术会议论文集(二)[C];2004年
2 薛德余;王勇;;基于实际切齿方法的螺旋锥齿轮齿面反求[A];人才、创新与老工业基地的振兴——2004年中国机械工程学会年会论文集[C];2004年
3 周彦伟;杨伯原;邓效中;梁桂明;;利用“非零”变位改善螺旋锥齿轮的综合强度[A];第三届全国青年摩擦学学术会议论文集[C];1995年
4 许文全;曾辉藩;;螺旋锥齿轮数字化制造的关键技术及研究现状[A];全国先进制造技术高层论坛暨第九届制造业自动化与信息化技术研讨会论文集[C];2010年
5 刘春华;冯立艳;严子深;;基于Pro/E的螺旋锥齿轮三维建模与仿真[A];全国先进制造技术高层论坛暨第九届制造业自动化与信息化技术研讨会论文集[C];2010年
6 杨锋军;孟春景;;CBN硬车削在螺旋锥齿轮中的应用研究[A];2008年安徽省科协年会机械工程分年会论文集[C];2008年
7 张帅;;螺旋锥齿轮减速器在直进式拉丝机中的使用[A];2011金属制品行业技术信息交流会论文集[C];2011年
相关重要报纸文章 前10条
1 徐荣;株洲造出国内最大螺旋锥齿轮[N];湖南日报;2008年
2 记者 李文峰;螺旋锥齿轮生产线填补国内空白[N];湖南日报;2008年
3 苏晓洲 龙行才;我国自主建成螺旋锥齿轮数字生产线[N];机电商报;2005年
4 闻U,
本文编号:1829686
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1829686.html