当前位置:主页 > 科技论文 > 金属论文 >

厚壁钢管缺陷水浸超声检测技术研究

发布时间:2018-05-19 03:31

  本文选题:厚壁钢管 + 水浸超声检测 ; 参考:《北京理工大学》2015年硕士论文


【摘要】:厚壁钢管广泛应用于工业领域的各种重要场合,由于制作工艺的局限性和使用环境的恶劣性,厚壁钢管在加工和使用过程中易出现裂纹、折叠、分层、夹杂等致命缺陷,对其质量构成严重威胁,容易造成安全隐患。将超声无损检测技术应用于厚壁钢管的缺陷检测,是保证其产品质量、提高生产效率、节约生产成本的关键。 本文主要针对厚径比大于0.3的厚壁钢管存在的超声检测技术难题,开展了水浸法超声检测理论及实验研究,并针对小径厚壁钢管进行检测方案设计及检测参数研究。为解决厚壁钢管变型横波法内壁纵向缺陷检测时最优偏心距难以确定的问题,本文分析入射声波在管壁内传播路径,提出了基于声波在各介质分界面能量反/折射系数二维积分的缺陷回波能量估计方法。该方法能够给出任意内外径被测管件缺陷回波能量随偏心距变化关系曲线,,确定出最优偏心距。实际检测实验结果与该方法的计算值一致,验证了该方法的有效性与可靠性。另外,该方法具有通用性,不局限于用于水浸变型横波内壁纵向缺陷检测的偏心距优化,可以推广应用于其他缺陷检测偏心距、入射角等参数的优化,且不受被测管件材料、形状与尺寸或声束形状与尺寸的约束。对于检测参数正确选取有重要意义。 为满足小径厚壁钢管单件、快速、高精度的检测需求,本文提出了一套水浸超声自动检测系统方案,设计了机械自动扫查装置结构,能够实现管体全覆盖、无端部盲区检测。该系统的研制对促进适用于单件、成品小径厚壁钢管的高精度超声检测系统研制领域的发展具有深远意义。
[Abstract]:Thick-walled steel pipe is widely used in various important occasions in the industrial field. Due to the limitation of manufacturing technology and the bad and bad use environment, the thick walled steel pipe is prone to crack, fold, delamination, inclusion and other fatal defects in the process of processing and use. It poses a serious threat to its quality and easily leads to hidden safety problems. The application of ultrasonic nondestructive testing technology to the defect detection of thick-walled steel pipe is the key to ensure the product quality, improve the production efficiency and save the production cost. In this paper, aiming at the technical problems of ultrasonic testing for thick walled steel pipe with thick-diameter ratio greater than 0.3, the theory and experiment of ultrasonic testing with water immersion method are carried out, and the design of testing scheme and the research of testing parameters are also carried out for small diameter thick walled steel pipe. In order to solve the problem that the optimum eccentricity is difficult to determine in the detection of longitudinal defects of thick wall steel tube by the modified shear wave method, the propagation path of incident sound wave in the tube wall is analyzed in this paper. A defect echo energy estimation method based on 2-D integration of energy inversion / refraction coefficient of acoustic wave at the interface of each medium is presented. This method can give the curve of echo energy with eccentricity and determine the optimal eccentricity. The experimental results are in agreement with the calculated values, and the validity and reliability of the method are verified. In addition, the method is universal and not limited to the optimization of the eccentricity for the longitudinal defect detection of the water-immersed S-wave inner wall. It can be applied to the optimization of other parameters such as the detection of eccentricity and the angle of incidence of the defect, and is not subject to the material of the pipe to be tested. Shape and size or sound beam shape and size constraints. It is of great significance for the correct selection of detection parameters. In order to meet the demand of single piece, fast and high precision detection of small diameter thick wall steel pipe, this paper puts forward a set of automatic ultrasonic detection system for water immersion, and designs the structure of mechanical automatic scanning device, which can realize the detection of the blind area of the tube covering completely and without the end. The development of this system is of great significance to the development of high precision ultrasonic testing system for single piece and finished steel pipe with small diameter and thick wall.
【学位授予单位】:北京理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG115.285

【参考文献】

相关期刊论文 前7条

1 赵仁顺;;超厚壁钢管内壁缺陷的超声波探伤方法研究[J];钢管;2010年03期

2 姚欢;冯挺;赵仁顺;余国民;;钻铤用厚壁钢管超声波探伤方法研究[J];焊管;2009年12期

3 ;钢管分类方法简介[J];金属世界;2005年02期

4 贾楠;杨录;张艳花;;钻铤缺陷超声自动检测系统的设计[J];计算机测量与控制;2010年01期

5 唐锐;张敬东;张祺;;小径厚壁钢管超声探伤系统设计研究[J];机械设计与制造;2013年08期

6 张晓琳;;承压类压力管道钢管检验技术分析[J];能源与节能;2011年10期

7 朱康平;王力;冯辉;文宁;;厚壁锆合金管材超声波探伤方法研究[J];钛工业进展;2012年06期



本文编号:1908544

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1908544.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户73c8b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com