GH99高温合金高温变形行为及组织演化规律研究
本文选题:GH99高温合金 + 高温变形 ; 参考:《哈尔滨工业大学》2015年博士论文
【摘要】:GH99是一种典型的γ′相强化型镍基高温合金,合金中的W、Mo、Co等元素可以起到固溶强化作用,B、Ce、Mg等元素可以起到晶界强化作用。该合金具有优良的高温力学性能,抗蠕变性能和耐腐蚀性能,目前主要用于航空航天的发动机中。该合金的最高使用温度可以达到1000℃,是使用温度较高的一种高温合金。该合金的热变形行为对温度和应变速率等工艺参数非常敏感,其变形抗力很大,成形非常困难。GH99合金的合金化程度很高,其在高温条件下的组织演变非常复杂,而且高温变形时的工艺参数也会对该合金的微观组织造成很大影响,其组织控制难度很大。此外,该合金中存在大量的退火孪晶,探索退火孪晶在热处理过程及高温变形过程中的演化规律也十分必要。本文研究了GH99合金热处理过程中的组织演化特点,采用高温压缩实验研究该合金的高温变形力学行为,同时探索了该合金高温变形过程中动态再结晶组织以及退火孪晶的演化规律。通过对该合金进行热处理实验,得到了合金中Σ3晶界和γ′相在不同热处理条件下的演化规律。固溶处理过程中,随着固溶温度的升高和保温时间的延长,Σ3晶界体积分数会呈现出先增大后减小的趋势。时效处理过程中,Σ3晶界结构非常稳定,且其体积分数变化不大,一直维持在0.553~0.633范围内。此外,随着时效温度的升高和保温时间的延长,合金中γ′相的粗化现象明显,其长大激活能约为248.8kJ/mol。随着γ′相的逐渐长大,部分γ′相形状会由球形变成方形。通过研究该合金的高温变形力学行为,建立了该合金在加工硬化-动态回复阶段和动态再结晶阶段的本构方程,并验证了该本构方程的准确性。同时,利用Arrhenius方程计算出了该合金的热变形激活能,Q=427.626kJ/mol。基于DMM模型,建立了GH99合金不同应变下的功率耗散图,结合微观组织观察得到了该合金成形的最佳工艺参数为:温度区间1090-1160℃,应变速率区间0.01-0.3s-1。利用四种失稳判据(Prasad、Murty、Gegel和Malas)绘制GH99合金在真应变为0.65时的热加工图,结合微观组织观察发现了该合金的两个失稳区:第一个位于温度区间1010~1080℃,应变速率区间0.16~1s-1范围内;第二个位于温度区间1080~1160℃,应变速率区间0.32~1s-1范围内。通过微观组织观察发现GH99合金热成形过程中失稳变形的主要机制是局部流动和绝热剪切带。利用EBSD技术,对GH99合金高温压缩过程中动态再结晶组织的演化规律进行了深入研究。结果表明:随着变形温度的升高和应变速率的减小,动态再结晶晶粒尺寸与其体积分数会不断增大。依据动态再结晶组织随着工艺参数的演化规律,建立了该合金的动态再结晶动力学模型和动态再结晶晶粒尺寸预测模型。此外,GH99合金的动态再结晶形核机制主要包括两种:不连续动态再结晶与连续动态再结晶。虽然这两种机制在该合金的高温变形过程中同时进行,但连续动态再结晶只是一种辅助形核机制。不连续动态再结晶包括晶粒形核与长大两个过程,其中长大过程在高温低应变速率条件下占主导地位,而形核在低温高应变速率条件下占据主导地位。连续动态再结晶虽然只是一种辅助机制,但是它在高温变形的初始阶段得到一定强化,随着应变的增大,它的作用再次削弱。此外,连续动态再结晶的作用还会随着变形温度的升高而削弱,随着应变速率的增大而增强。利用EBSD技术,对GH99合金高温压缩过程中退火孪晶的演化规律进行了深入研究。结果表明:高温压缩初始阶段,原始晶粒内部的Σ3n(n=1,2,3)晶界大量消失,导致Σ3n(n=1,2,3)晶界的体积分数和Σ3晶界密度降低。随着应变的逐渐增大,大量的Σ3晶界在动态再结晶组织中以共格Σ3晶界的形式出现,从而导致Σ3n(n=1,2,3)晶界的体积分数和Σ3晶界密度逐渐增大。此外,在GH99合金高温变形过程中,新的Σ3晶界主要通过偶然生长机制形成,而Σ9和Σ27晶界则主要通过晶界再生机制形成。此外,随着变形温度的升高和应变速率的减小,该合金中的Σ3n(n=1,2,3)晶界体积分数和Σ3晶界密度都会呈现出先增大而后减小的趋势,而Σ3晶界中共格Σ3晶界的比例则会不断增大。
[Abstract]:GH99 is a typical type of Ni based superalloy of gamma phase intensification. The elements such as W, Mo, and Co in the alloy can play a solid solution strengthening effect. B, Ce, Mg and other elements can enhance the grain boundary. The alloy has excellent high temperature mechanical properties, vermicular resistance and corrosion resistance. The alloy is mainly used in aero and aerospace engines. The maximum use temperature can reach 1000 C, a high temperature alloy. The thermal deformation behavior of the alloy is very sensitive to the temperature and strain rate, its deformation resistance is great, the forming is very difficult and the alloying degree of.GH99 alloy is very high. The microstructure evolution of the alloy at high temperature is very complex, and the high temperature is very high. The process parameters of the deformation will also have a great influence on the microstructure of the alloy, and its microstructure is difficult to control. In addition, there are a large number of annealing twins in the alloy. It is necessary to explore the evolution law of annealing twins during heat treatment and high temperature deformation. In this paper, the structure of the heat treatment of GH99 alloy was studied. The mechanical behavior of high temperature deformation of the alloy was studied by high temperature compression test. At the same time, the evolution law of dynamic recrystallization and annealing twins in the process of high temperature deformation was explored. Through the heat treatment experiment on the alloy, the evolution law of the grain boundary and gamma phase in the alloy under different heat treatment conditions was obtained. In the process of solid solution treatment, with the increase of the solid solution temperature and the prolongation of the holding time, the volume fraction of the grain boundary of the sigma 3 will increase first and then decrease. During the aging treatment, the structure of the sigma 3 grain boundary is very stable, and its volume fraction is not changed much, and it is kept in the range of 0.553~0.633. In addition, with the increase of aging temperature and heat preservation The growth activation energy of the alloy is about 248.8kJ/mol. with the gradual growth of the gamma phase, and the shape of partial gamma phase will turn from spherical to square. By studying the mechanical behavior of the alloy at high temperature, the constitutive model of the alloy in the stage of working hardening dynamic recovery and dynamic recrystallization is established. The accuracy of the constitutive equation is verified. At the same time, the thermal deformation activation energy of the alloy is calculated by Arrhenius equation. Based on the DMM model, the power dissipation diagram of the GH99 alloy under different strain is established. The optimum process parameters of the alloy forming are obtained by observing the microstructure of the GH99 alloy. The temperature range is 1090-1160. The strain rate interval 0.01-0.3s-1. uses four Instability Criteria (Prasad, Murty, Gegel and Malas) to draw the thermal processing diagram of GH99 alloy at the true strain of 0.65. In combination with the microstructure observation, two instability regions of the alloy are found: the first is in the temperature range 1010~1080, the strain rate interval 0.16~1s-1 range, and the second at the temperature. It is found that the main mechanism of the instability deformation in the hot forming process of GH99 alloy is the local flow and the adiabatic shear band. The evolution law of the dynamic recrystallized microstructure of the GH99 alloy during the high temperature compression process is studied by the EBSD technology. The results show that the evolution of the dynamic recrystallized microstructure of the GH99 alloy during the high temperature compression process is deeply studied. The dynamic recrystallization grain size and its volume fraction will increase with the increase of the deformation temperature and the decrease of the strain rate. The dynamic recrystallization dynamic model and the dynamic recrystallization grain size prediction model of the alloy are established according to the evolution of the dynamic recrystallization structure. In addition, the dynamic remould of the GH99 alloy is reformed. The crystalline nucleation mechanism mainly includes two kinds: discontinuous dynamic recrystallization and continuous dynamic recrystallization. Although these two mechanisms are carried out at the same time during the high temperature deformation of the alloy, continuous dynamic recrystallization is only a auxiliary nucleation mechanism. The discontinuous dynamic recrystallization includes two processes of grain nucleation and growth, in which the growth process is high Under the condition of low temperature and low strain rate, the core is dominant at low temperature and high strain rate. Continuous dynamic recrystallization is only a auxiliary mechanism, but it is strengthened at the initial stage of high temperature deformation. With the increase of strain, its use is weakened again. In addition, the effect of continuous dynamic recrystallization is made. With the increase of deformation temperature and the increase of strain rate, the evolution of annealing twins in the process of high temperature compression of GH99 alloy was studied by EBSD technology. The results showed that the grain boundary of the sigma 3N (n=1,2,3) inside the original grain was disappearing in the initial stage of high temperature compression, leading to the grain boundary of the sigma 3N (n=1,2,3). The density of volume fraction and sigma 3 grain boundary decreases. As the strain increases, a large number of sigma 3 grain boundaries appear in the form of a common sigma 3 grain boundary in the dynamic recrystallized tissue, which leads to the increase of the volume fraction of the grain boundary and the density of the sigma 3 grain boundary in the sigma 3N (n=1,2,3). In addition, the new sigma 3 grain boundary is mainly produced by accidental birth during the high temperature deformation process of GH99 gold. The long mechanism is formed, while the grain boundary regeneration mechanism is mainly formed in the grain boundary of the sigma 9 and the sigma 27. In addition, the grain boundary volume fraction and the sigma 3 grain boundary density in the alloy will increase first and then decrease with the increase of the deformation temperature and the decrease of the strain rate, while the proportion of the grain boundary of the sigma 3N in the sigma 3 grain boundary will increase continuously. Big.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG132.3
【相似文献】
相关期刊论文 前10条
1 李淼泉;陈胜晖;李晓丽;;钛合金高温变形时的微观组织模型[J];稀有金属材料与工程;2006年02期
2 王哲君;强洪夫;王学仁;;发生不连续屈服的钛合金高温变形研究进展[J];中国有色金属学报;2012年07期
3 王哲君;强洪夫;王学仁;;考虑不连续屈服的钛合金高温变形本构模型[J];稀有金属材料与工程;2013年01期
4 刘林生,崔可维,刘玉文,周大军;高温变形试验快速冷却装置[J];吉林工业大学学报;1990年02期
5 孟刚;李伯龙;黄晖;李红梅;聂祚仁;;Al-4.7Mg-0.7Mn-0.1Zr-0.4Er合金高温变形行为[J];材料热处理学报;2010年02期
6 余水茂;测定陶瓷坯体高温变形的方法[J];瓷器;1975年01期
7 赵瑞龙;刘勇;田保红;张晓伟;张毅;;纯铜的高温变形行为[J];金属热处理;2011年08期
8 刘欢;王琪;易丹青;王斌;臧冰;;Mg-6.3Zn-0.7Zr-0.9Y-0.3Nd合金高温变形行为及热加工图[J];中南大学学报(自然科学版);2013年01期
9 罗德信;钟定忠;;高温变形阻力的研究[J];钢铁研究;1985年03期
10 王文彬;;基于热压缩模拟实验的800H合金高温变形行为研究[J];铸造技术;2014年07期
相关会议论文 前10条
1 李淼泉;薛善坤;熊爱明;;应用模糊数学预测钛合金高温变形时的晶粒尺寸[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
2 孔凡涛;张树志;陈玉勇;;Ti-46Al-2Cr-4Nb-Y合金的高温变形及加工图[A];第十四届全国钛及钛合金学术交流会论文集(上册)[C];2010年
3 徐勇;柳瑞清;;几种铝合金高温本构关系的研究[A];全国第十二届轻合金加工学术交流会论文集[C];2003年
4 张绍远;赵兴国;李晋敏;梁伟;;Ti-48Al-1Si双相合金高温变形组织的研究[A];第二届全国扫描电子显微学会议论文集[C];2001年
5 张慧芳;张治民;张星;李保成;马鸿海;;BTi-62421S合金高温变形流动应力模型[A];第十四届全国钛及钛合金学术交流会论文集(上册)[C];2010年
6 潘兵;吴大方;;基于数字图像相关方法的非接触高温变形光学测量技术研究[A];第十三届全国实验力学学术会议论文摘要集[C];2012年
7 赵彦蕾;李伯龙;朱知寿;聂祚仁;;高温变形参量对TC21钛合金组织与性能的影响[A];第十四届全国钛及钛合金学术交流会论文集(上册)[C];2010年
8 田宇兴;李述军;郝玉琳;杨锐;;Ti2448合金在不同应变速率下的高温变形机制[A];第十四届全国钛及钛合金学术交流会论文集(上册)[C];2010年
9 洪建明;赵晓宁;刘毅;郦定强;林栋梁;陈世朴;;高温变形FeAL金属间化合物中的位错蜷线[A];第八次全国电子显微学会议论文摘要集(Ⅱ)[C];1994年
10 吴艳青;施惠基;;FCC多晶高温变形中的晶界效应[A];全国第八届热疲劳学术会议论文集[C];2004年
相关博士学位论文 前9条
1 张弘斌;GH99高温合金高温变形行为及组织演化规律研究[D];哈尔滨工业大学;2015年
2 崔宁;Beta-gamma TiAl合金成分设计及高温变形行为研究[D];哈尔滨工业大学;2016年
3 李晓丽;钛合金高温变形时跨层次模型及数值模拟[D];西北工业大学;2005年
4 宗影影;钛合金置氢增塑机理及其高温变形规律研究[D];哈尔滨工业大学;2007年
5 周德强;新型含铝奥氏体耐热钢相形成规律及高温变形行为研究[D];北京科技大学;2015年
6 赵敬伟;热氢处理对钛合金组织演变及高温变形行为的影响[D];东北大学 ;2009年
7 王岩;δ相对GH4169合金高温变形及再结晶行为的影响[D];哈尔滨工业大学;2008年
8 王亮;钛合金液态气相置氢及其对组织和性能的影响[D];哈尔滨工业大学;2010年
9 丁汉林;AZ91镁合金高温变形行为的实验研究与数值模拟[D];上海交通大学;2007年
相关硕士学位论文 前10条
1 王晓瑜;253MA不锈钢高温变形行为及组织性能研究[D];东北大学;2014年
2 张妍婧;Al_(0.5)CoCrFeNi高熵合金高温变形行为以及加工图研究[D];北京理工大学;2016年
3 李军帅;Ti6242钛合金闪光焊过程中高温变形行为及有限元模拟[D];贵州大学;2015年
4 陈帅;Mg-Pb-Al-B屏蔽材料组织与高温变形行为研究[D];昆明理工大学;2016年
5 王东民;场作用下材料高温变形行为及数值分析[D];大连理工大学;2008年
6 罗皎;Ti-6.62Al-5.14Sn-1.82Zr钛合金高温变形行为及模型研究[D];西北工业大学;2007年
7 赵蒙;TA15钛合金高温变形行为及模拟研究[D];合肥工业大学;2014年
8 申发兰;TA15钛合金高温变形规律研究[D];南京航空航天大学;2013年
9 刘杰;7NO1铝合金高温变形行为研究[D];湖南大学;2008年
10 王金惠;TC11钛合金的高温变形行为及热处理工艺对合金组织性能的影响[D];中南大学;2010年
,本文编号:1952053
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1952053.html