复杂曲面五轴侧铣加工误差控制及实验研究
发布时间:2018-06-01 06:44
本文选题:叶片变形 + 预测和补偿 ; 参考:《上海应用技术学院》2015年硕士论文
【摘要】:整体叶轮是传统机械行业的核心部件之一,也是各类航空航天、汽车发动机、精密医疗设备等高端机械的关键部件。同时整体叶轮也是典型的复杂曲面零件,而五轴数控加工是实现复杂曲面零件高效铣削的有效手段之一。但是叶轮叶片设计曲面结构、刀具轨迹规划的复杂性和铣削加工过程的易变形性,给生成高质量的刀具路径带来了很多困难。本文以复杂曲面叶轮叶片五轴数控侧铣精加工过程为研究背景,研究整体叶轮用UG三维实体建模、基于ANSYS有限元分析软件对叶轮叶片进行加工过程变形量计算和分析整个叶片的变形规律,再利用加工变形误差补偿法和整体侧铣刀具轨迹优化法对加工变形误差进行补偿及优化,然后可以获得综合补偿优化后的叶片曲面,重构叶片曲面并输出加工代码,通过高速铣削加工实验去验证预测方法和优化补偿方法的准确性。本学位论文主要研究工作及创新性成果如下:一、基于有限元分析软件ANSYS对叶轮叶片侧铣精加工过程加工变形预测。选用铣削力经验公式,对叶片加工过程中各点的铣削力进行计算,基于ANSYS有限元分析软件对叶轮叶片侧铣精加工过程进行适宜的简化,然后对叶片进行定义属性及约束、网格划分,载荷施加,求解计算出叶片侧铣精加工过程叶片的变形量以及得出叶片的变形规律。二、提出了叶轮叶片侧铣精加工过程变形—刀具轨迹规划综合误差的补偿方法。在利用有限元分析软件ANSYS对整体叶轮叶片加工变形误差预测的基础上,针对影响叶轮叶片加工误差的两个主要因素:刀具轨迹规划和叶片加工变形误差,利用多次循环镜面补偿法和整体侧铣刀具轨迹优化法对变形误差进行补偿的同时对刀具轨迹规划进行了优化,最后利用补偿优化后的曲面重构叶片曲面,得出加工代码。三、进行整体叶轮五轴数控铣削加工对比实验。利用两个对比试验,即用企业中常用的加工叶轮的方法与本文对叶片加工变形预测补偿优化后加工叶轮的方法对比,验证预测加工变形方法和变形误差补偿优化方法的正确性。
[Abstract]:Integral impeller is one of the core parts in traditional machinery industry, and it is also the key part of all kinds of high-end machinery such as aerospace, automobile engine, precision medical equipment and so on. At the same time, the integral impeller is also a typical complex curved surface part, and five-axis NC machining is one of the effective means to realize the efficient milling of complex curved surface parts. However, the design of surface structure of impeller blades, the complexity of tool path planning and the easy deformation of milling process bring a lot of difficulties to the generation of high-quality tool paths. In this paper, based on the research background of complex curved impeller blade five-axis NC side milling finishing process, the integral impeller is modeled by UG three-dimensional solid model. Based on the ANSYS finite element analysis software, the deformation of the impeller blade is calculated and the deformation law of the whole blade is analyzed. Then the machining deformation error is compensated and optimized by using the machining deformation error compensation method and the integral side milling tool trajectory optimization method, and then the blade surface after comprehensive compensation and optimization can be obtained, the blade surface can be reconstructed and the machining code can be output. The accuracy of the prediction method and the optimized compensation method are verified by high speed milling experiments. The main research work and innovative achievements of this dissertation are as follows: first, the deformation prediction of blade side milling finish machining process based on finite element analysis software ANSYS. The milling force of each point in the process of blade machining is calculated by selecting the empirical formula of milling force. Based on the ANSYS finite element analysis software, the process of side milling finish machining of impeller blade is appropriately simplified, and then the attributes and constraints of the blade are defined. The deformation of the blade during the side milling finishing process was calculated and the deformation law of the blade was obtained by meshing and applying the load. Secondly, a compensation method for the comprehensive errors of the deformation and tool path planning in the side milling of impeller blades is presented. Based on the prediction of machining deformation error of integral impeller blade by using finite element analysis software ANSYS, two main factors affecting the machining error of impeller blade are discussed: tool path planning and blade machining deformation error. The multi-cycle mirror compensation method and the integral side milling tool trajectory optimization method are used to compensate the deformation error and the tool path planning is optimized. Finally, the blade surface is reconstructed by using the compensated optimization surface, and the machining code is obtained. Third, the comparative experiment of five-axis NC milling of integral impeller is carried out. In this paper, two comparative tests are carried out, that is, the common methods of machining impellers in enterprises are compared with the methods used in this paper to predict and compensate for machining deformation. The correctness of the methods of predicting machining deformation and optimizing methods of compensation for deformation errors is verified.
【学位授予单位】:上海应用技术学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG659
【相似文献】
相关期刊论文 前10条
1 高永祥;郁君平;;数控高速加工中刀具轨迹优化[J];轻工机械;2008年06期
2 赵振宇;张萌;周后明;;最短路优化的复杂型腔刀具轨迹规划算法[J];制造技术与机床;2009年01期
3 孙晶;蔡永林;;基于插铣加工的非等参数刀具轨迹生成方法[J];装备制造技术;2009年07期
4 韩有昂;张英杰;喻明让;;一种有向投影的测量数据刀具轨迹生成技术[J];西安交通大学学报;2011年09期
5 赵良才,,吴春才;空间直纹和准直纹曲面加工刀具轨迹生成及五轴后置软件研制[J];机械工业自动化;1994年03期
6 平雪良,周来水,周儒荣;二维轮廓刀具轨迹自动生成的算法[J];无锡轻工大学学报;1996年04期
7 张力,张云海,邓稼
本文编号:1963236
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1963236.html
教材专著