当前位置:主页 > 科技论文 > 金属论文 >

曲面混合磁流体数控研磨关键技术研究

发布时间:2018-06-15 21:07

  本文选题:混合磁流体 + 曲面研磨 ; 参考:《武汉理工大学》2015年硕士论文


【摘要】:机械加工中的光整技术就是在工件型面精度得到确保的情况下,以提升工件表面质量、降低工件表面粗糙度值为目的的各种机械加工技术、方法统称。零件表面在光整加工的作用下,很大程度上提高其各种性能。模具工件大部分加工工序已完成了自动化,然而工件生产加工的最终工序——零件表面的光整加工却依然徘徊在手工加工的阶段,大大影响了我国的精密制造业的发展。混合磁流体研磨的方法是在传统研磨的基础上,利用外加磁场以及磁性磨料形成具有一定刚度“磁刷”进行研磨的一种新型的光整加工技术,且由于具有柔性、自适应性等特点被广泛使用。本文对磁流体曲面研磨去除量的规律进行了分析,针对去除规律设计研磨头轨迹的自适应控制系统,以期获得等粗糙度的研磨。首先,对混合磁流体的宏观以及微观去除机理进行分析,着重研究了研磨头轨迹以及研磨间隙对磁流体曲面研磨的影响,在常规“之”字形刀具轨迹上提出了适用于曲面磁流体研磨的研磨头轨迹。其次,本文在实验室平面研磨试验装置的基础上提出整体结构与控制系统方案,着重分析曲面研磨头结构,并运用ANSYS对比开槽与不开槽磁极头产生的磁场。对曲面研磨装置进行功能分析,提出了集加工与测量一体的整体控制方案。接着,对激光测头的运动轨迹进行规划,根据工件表面模型进行分块扫描,平缓区域采用较大的行间距,陡壁区域采用较小的行间距。在常用的跟踪算法模型上,根据待测工件表面的Z向坐标的读数的反馈来自适应的调整跟踪的方法。最后,利用VC++和OpenGL进行自适应的研磨头轨迹规划,利用链表结构进行数据存储。将曲面模型离散由三角面片构成的STL模型,根据第二章提出的研磨头轨迹规划设置截面行间距,利用截面法求得研磨头与工件表面刀触点的轨迹,在刀触点的轨迹上按照研磨头半径以及研磨间隙偏置生成刀位点的轨迹,运用实例验证该轨迹。
[Abstract]:The finishing technology in mechanical processing is a kind of mechanical processing technology which aims to improve the surface quality of the workpiece and reduce the surface roughness value of the workpiece under the condition that the workpiece surface precision is ensured, and the method is generally called. The parts surface can greatly improve its various properties under the effect of finishing. Automatic sequence has been completed. However, the final process of the production and processing of the workpiece, the finishing process of the surface of the parts is still hovering in the stage of manual processing, which greatly affects the development of our country's precision manufacturing industry. A new finishing technology for grinding with fixed stiffness "magnetic brush" is widely used because of its flexibility and adaptability. In this paper, the law of the removal of magnetic fluid surface is analyzed. The adaptive control system for designing the trajectory of the grinding head is designed to obtain the grinding of the roughness. First, The macro and micro removal mechanism of the mixed magnetic fluid is analyzed, and the influence of the track of the grinding head and the grinding clearance on the magnetic fluid surface grinding is emphatically studied. The track of the grinding head suitable for the surface magnetic fluid grinding is put forward on the track of the conventional "the" shaped cutter. Secondly, the base of this paper is based on the laboratory plane grinding test device. The whole structure and control system scheme is put forward, and the surface grinding head structure is emphatically analyzed, and the magnetic field produced by the slotting and non grooving magnetic pole head is compared with ANSYS. The function analysis of the surface grinding device is made and the integrated control scheme is put forward. Then, the trajectory of the laser head is planned, and the work is based on the work. The surface model of the surface is divided into block scanning, the flat area adopts the larger row spacing and the steep wall area adopts the smaller row spacing. On the common tracking algorithm model, the adaptive tracking method is derived from the adaptive feedback method based on the feedback of the Z to coordinate readings on the surface of the workpiece to be measured. Finally, the adaptive grinding head trajectory planning is made using VC++ and OpenGL. Using the chain table structure to store the data, the surface model is discrete STL model composed of triangular patches. According to the trajectory planning of the grinding head set up in the second chapter, the cross section spacing is set. The path of the grinding head and the surface of the workpiece surface is obtained by the cross section method, which is generated on the path of the cutter contact according to the radius of the grinding head and the grinding gap. The trajectory of the knife site is verified by an example.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG596

【参考文献】

相关期刊论文 前10条

1 计时鸣;李琛;谭大鹏;袁巧玲;池永为;赵凌寒;;基于Preston方程的软性磨粒流加工特性[J];机械工程学报;2011年17期

2 谢晋;邹明山;崔晓玲;;复杂自由曲面曲率分布特征对数控铣削性能的影响[J];机械工程学报;2009年11期

3 芦亚萍;马季;蔡军伟;王龙山;;模具自由曲面磁力超精研磨控制系统[J];农业机械学报;2006年07期

4 赵玉刚;;磁粒光整加工技术的应用与发展[J];现代制造技术与装备;2006年02期

5 乐广军,周宏甫;离散数据曲面的三轴数控粗加工代码生成算法[J];现代制造工程;2005年06期

6 刘金义,侯宝明;STL格式实体的快速拓扑重建[J];工程图学学报;2003年04期

7 丁汉,朱利民,熊振华;复杂曲面快速测量、建模及基于测量点云的RP和NC加工[J];机械工程学报;2003年11期

8 庄海军,周儒荣,安鲁陵,周来水;实体模型的三轴数控粗加工刀轨生成算法[J];计算机辅助设计与图形学学报;2003年01期

9 许新建,胡俊,王宇晗;三维实体数字化测量及数控加工一体化技术的研究现状[J];机械制造;2002年10期

10 柯映林,肖尧先,李江雄;反求工程CAD建模技术研究[J];计算机辅助设计与图形学学报;2001年06期

相关博士学位论文 前1条

1 鞠华;逆向工程中自由曲面的数据处理与误差补偿研究[D];浙江大学;2003年

相关硕士学位论文 前4条

1 叶楠;弱碱性Fe_3O_4水基磁流体的制备与稳定机理研究[D];南昌大学;2013年

2 刘洋;模具自由表面磁力研磨的技术研究[D];吉林大学;2008年

3 徐立军;曲面数字化磁力研磨加工技术基础研究[D];浙江大学;2004年

4 王兴祥;基于自由曲面磁性研磨永磁磁极头开发与实验研究[D];太原理工大学;2003年



本文编号:2023656

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2023656.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8e86a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com