精密微小型五轴联动微细铣削机床的研制
发布时间:2018-06-18 16:10
本文选题:微小型机床 + UMAC ; 参考:《长春理工大学》2015年硕士论文
【摘要】:微小型产品在生物工程、现代医疗、微电子工业、航空航天等高新技术领域的需求日益迫切。组成微小型产品的的零件特征尺寸处于中间尺度(0.01~10mm),其结构形状复杂、材料多样、尺寸与表面质量精度高,利用基于半导体制造工艺集成激光刻蚀技术、LIGA技术的特种加工方法对其进行加工无法满足复杂结构形状以及多种材料的加工,而采用常规尺寸精密、超精密机床进行加工存在成本高、工件材料利用率低、柔性不足、加工效率低等问题。机床的微小型化成为解决上述问题与不足的行之有效主要方法之一。本文针对复杂三维微小零件的加工,首先制定了所要构建机床的设计要求以及总体构建方案。在此基础上,完成了机床各部件的选型和机床实体结构的搭建。对机床床身实体结构进行了实验模态分析得到了其动态特性,为后续力学特性的分析奠定了基础。利用多普勒激光测振仪在极端加工条件下对机床的实体结构进行了振动测试,验证了所构建机床实体结构的稳定性。在完成机床实体结构构建的基础上,为实现机床的加工功能,基于UMAC运动控制器完成机床数控系统的构建。然后,为进一步优化数控系统的运动控制性能,对各进给轴运动控制系统的响应特性进行分析,并对闭环PID控制参数进行了调整,达到了较为理想的运动控制效果。最后,为便于机床加工操作,基于UMAC的二次开发功能,利用Visual C#软件开发平台开发了模块化结构的数控系统软件,并进行了运行测试,验证了其工作性能。为实现复杂三维微小零件数控加工程序的自动编制以及提高机床的加工精度,首先对所构建的机床进行了运动学分析,得出刀位点坐标由工件坐标系到机床坐标系的转换关系,为数控加工程序的后置处理提供理论基础。同时,分析了机床运动误差对加工精度的影响,并对机床各进给轴定位误差进行了测量和补偿,大幅度提升了机床运动定位精度。使用MATLAB M文件编写了数控加工程序后置处理模块,通过与NX UG8.5的联合使用实现了复杂三维零件的自动数控编程。为验证数控加工程序的正确性,保证机床在加工过程中的安全,在VERICUT中构建了机床的加工仿真模型。最后通过典型样件的加工测试,验证了所研制机床的加工性能。
[Abstract]:The demand of micro-products in biotechnology, modern medical treatment, micro-electronics industry, aerospace and other high-tech fields is increasingly urgent. The characteristic dimensions of the parts that make up the micro products are in the mesoscale scale of 0.01m / 10mm / m, with complex structure, various materials and high precision in size and surface quality. The special machining method based on semiconductor manufacturing technology integrated laser etching technology and Liga technology can not meet the complex structure shape and many kinds of materials processing, but adopts the conventional size precision. Ultra-precision machine tools have some problems such as high cost, low utilization ratio of workpiece materials, low flexibility and low machining efficiency. The miniaturization of machine tools is one of the most effective methods to solve the above problems. In this paper, the design requirements and the overall construction scheme of the machine tool to be constructed are first formulated for the machining of complex three-dimensional micro-parts. On this basis, the selection of machine parts and the structure of machine tools are completed. The dynamic characteristics of the machine bed solid structure are obtained by the experimental modal analysis, which lays a foundation for the subsequent analysis of the mechanical properties. The vibration test of the solid structure of the machine tool is carried out under extreme machining conditions by using the Doppler laser vibration measuring instrument, and the stability of the solid structure of the machine tool is verified. In order to realize the machining function of the machine tool, the NC system is constructed based on the UMAC motion controller on the basis of the construction of the machine tool entity structure. Then, in order to further optimize the motion control performance of the NC system, the response characteristics of each feed shaft motion control system are analyzed, and the closed-loop pid control parameters are adjusted to achieve a more ideal motion control effect. Finally, in order to facilitate the machining operation of machine tools, based on the secondary development function of UMAC, the modular CNC system software is developed by using Visual C # software development platform, and the running test is carried out to verify its working performance. In order to realize the automatic programming of NC machining program for complex 3D micro parts and to improve the machining accuracy of the machine tool, the kinematics analysis of the machine tool is carried out, and the transformation relationship of the tool position coordinate from the workpiece coordinate system to the machine tool coordinate system is obtained. It provides a theoretical basis for post-processing of NC machining program. At the same time, the influence of machine tool motion error on machining accuracy is analyzed, and the positioning error of each feed axis of machine tool is measured and compensated, which greatly improves the machine tool motion positioning accuracy. The post-processing module of NC machining program is programmed with MATLAB M file, and the automatic NC programming of complex 3D parts is realized by the use of NX UG8.5. In order to verify the correctness of the NC machining program and ensure the safety of the machine tool in the process of machining, the machining simulation model of the machine tool is constructed in Vericut. Finally, the machining performance of the developed machine tool is verified by the processing test of typical sample parts.
【学位授予单位】:长春理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG659
【参考文献】
相关期刊论文 前3条
1 张霖;赵东标;张建明;孙学峗;庞长涛;;微细切削用小型数控铣床的研制[J];东南大学学报(自然科学版);2007年01期
2 曹自洋;何宁;李亮;黄亮;包杰;;微细铣削机床系统构建及微小型零件加工实验研究[J];工具技术;2009年03期
3 左煜;张建明;刘勇;徐昌语;;基于UMAC的直线电机精密伺服控制性能研究[J];航空精密制造技术;2011年06期
相关博士学位论文 前2条
1 张翔;小型五轴联动机床介观尺寸铣削加工及其相关模型的研究[D];哈尔滨工业大学;2011年
2 张霖;数控微细铣削机床系统构建及性能研究[D];南京航空航天大学;2007年
相关硕士学位论文 前1条
1 谢晓亮;基于UG的五轴联动数控机床的后置处理系统研究[D];华中科技大学;2009年
,本文编号:2036064
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2036064.html
教材专著