重质环烷酸催化氧化及制备咪唑啉型缓蚀剂的研究
本文选题:重质环烷酸 + 催化氧化 ; 参考:《中国石油大学(华东)》2015年硕士论文
【摘要】:工业酸洗除锈、油井酸化引起金属腐蚀,加入缓蚀剂可以有效的减缓金属腐蚀。咪唑啉类缓蚀剂是一种环保、高效、低毒的缓蚀剂。环烷酸是制备环烷基咪唑啉缓蚀剂的优良原料。我国克拉玛依炼油厂每年副产1万吨左右的重质环烷酸,来源广、价格低廉,但是酸值低、粘度大、分子量大,应用受限。本论文采取两种措施:催化氧化和制备咪唑啉型缓蚀剂,来提高重质环烷酸的工业附加值。首先,以氧气为氧化剂,探究了催化剂种类及用量、氧化温度、压力、时间等因素的影响,并且采取二次补氧、加入添加剂来进一步提高氧化深度。当以环烷酸盐为催化剂时,通过氧化,环烷酸酸值从95mgKOH/g升高到136mgKOH/g,环烷酸的粘度(60℃)从1480mpa·s降低到582mpa·s。通过红外光谱分析、元素分析、LC-MS分析技术对氧化前后环烷酸的结构进行详细的阐述。然后,分别以油酸、轻质环烷酸、重质环烷酸、氧化后环烷酸、混合酸为原料和二乙烯三胺反应,氯化苄为季铵化试剂合成了OM-1、OM-2、OM-3、OM-4、OM-5五种咪唑啉季铵盐缓蚀剂。通过红外光谱和核磁共振氢谱分析了咪唑啉季铵盐缓蚀剂的结构。采用静态挂片失重法评价了缓蚀剂的缓蚀率,探索了腐蚀温度、缓蚀剂加入量、腐蚀介质的浓度等因素对A3钢片腐蚀速率的影响。结果表明,OM-1缓蚀剂在5%盐酸腐蚀介质中,缓蚀率达到99.2%,符合标准DL/T523-1993中规定的酸洗缓蚀剂的评价指标;重质环烷酸先经过氧化再进一步合成的咪唑啉缓蚀剂,其缓蚀效率优于重质环烷酸咪唑啉缓蚀剂,与轻质环烷酸咪唑啉缓蚀剂效果相当,缓蚀率为93.3%。最后,通过改进缓蚀剂的合成方法,可以省去减压蒸馏过程,实现一锅法制备咪唑啉缓蚀剂。结果表明,以氧化后重质环烷酸为原料合成的缓蚀剂,产品在15%的盐酸溶液中,60℃,4h的条件下,缓蚀剂加入量为0.3%时,对N80钢片的缓蚀率为99.5%,符合标准SY/T5405-1996酸化用一级缓蚀剂的质量标准。红外光谱和核磁共振波谱分析表明该缓蚀剂是咪唑啉季铵盐和另外一种有机化合物的混合物。其本身是一种良好的油田酸化缓蚀剂,两者协同作用,抑制酸化压裂过程对金属的腐蚀。
[Abstract]:The corrosion of metal corrosion is caused by the acid cleaning of industrial acid washing and the acidification of oil wells. The imidazoline inhibitor is a kind of environmentally friendly, efficient and low toxic corrosion inhibitor. Naphthenic acid is a good raw material for the preparation of naphthenic Imidazoline Corrosion inhibitor. The Karamay refinery in China has a by-product of heavy naphthenic acid, which has a by-product of about 10 thousand tons per year. It has low acid value, low acid value, large viscosity, large molecular weight and limited application. This paper adopts two measures: catalytic oxidation and imidazoline type inhibitor to improve the industrial added value of heavy naphthenic acid. First, oxygen is used as oxidant to explore the influence of the catalyst species and dosage, oxidation temperature, pressure, time and other factors. Two times of oxygen supplement, adding additives to further improve the oxidation depth. When naphthenic acid is used as the catalyst, the value of naphthenic acid is increased from 95mgKOH/g to 136mgKOH/g by oxidation. The viscosity of naphthenic acid (60 degrees C) is reduced from 1480mpa. S to 582mpa. S. through infrared spectrum analysis, element analysis, and LC-MS analysis technique for naphthenic acid before and after oxidation. The structure of OM-1, OM-2, OM-3, OM-4, OM-5 and five kinds of imidazoline quaternary ammonium salts were synthesized with oleic acid, naphthenic acid, heavy naphthenic acid, naphthenic acid after oxidation, mixed acid as raw material and two ethylene three amine, and benzyl chloride as quaternating reagent. The structure of quaternary ammonium salt corrosion inhibitor. The corrosion inhibition rate of corrosion inhibitor was evaluated by static hanging weight loss method. The effect of corrosion temperature, corrosion inhibitor addition and corrosion medium concentration on the corrosion rate of A3 steel sheet was explored. The results showed that the corrosion inhibition rate of OM-1 corrosion inhibitor in 5% hydrochloric acid medium was 99.2%, which accorded with the standard of standard DL/T523-1993. The evaluation index of the acid washing inhibitor, the imidazoline inhibitor which is first oxidized and then synthesized by heavy naphthenic acid, is superior to heavy naphthenic acid imidazoline inhibitor, which is equivalent to the light naphthenic imidazoline inhibitor, and the corrosion inhibition rate is 93.3%. last. By improving the synthesis method of corrosion inhibitor, the decompression distillation can be saved. An imidazoline corrosion inhibitor was prepared by one pot method. The results showed that the corrosion inhibitor of heavy naphthenic acid after oxidation was prepared in 15% hydrochloric acid, 60 C and 4h, when the corrosion inhibitor was added to 0.3%, the corrosion inhibition rate of N80 steel was 99.5%, which was in line with the standard of standard SY/T5405-1996 acidification. Spectral and nuclear magnetic resonance spectroscopy analysis shows that the inhibitor is a mixture of imidazoline quaternary ammonium salt and another organic compound. It is a good acid corrosion inhibitor in oil field. Both of them synergistically and inhibit the corrosion of metal in the process of acidification and fracturing.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG174.42;TQ235
【参考文献】
相关期刊论文 前10条
1 曹逸飞;陈清涛;张海洪;郭莎莎;王凯;;环烷酸及其盐类的应用研究[J];广东化工;2013年16期
2 翟晶;赵昕楠;孔令坡;谢恩情;刘艺芳;;环烷酸对微乳型乳化油性能的影响研究[J];煤炭科学技术;2013年S2期
3 王欣;胡泽祥;陶志平;;高闪点喷气燃料润滑性能的研究[J];润滑与密封;2013年07期
4 韩旗英;刘志强;杨金华;李景芬;;用环烷酸从稀土料液中萃取除铝新工艺技术[J];稀土;2013年03期
5 吴刚;郝宁眉;陈银娟;米思奇;贾晓林;胡松青;;新型油酸咪唑啉缓蚀剂的合成及其性能评价[J];化工学报;2013年04期
6 张广东;戴倩倩;刘建仪;周飞;赵宏利;;咪唑啉类缓蚀剂合成及缓蚀性能评价[J];应用化工;2013年02期
7 梅平;邹华;施汉荣;艾俊哲;;咪唑啉硫酸酯盐ISES的合成及缓蚀性能研究[J];化学与生物工程;2012年01期
8 陶亮亮;朱燕;方李艳;胡瑞;;咪唑啉季铵盐合成研究进展[J];皮革与化工;2011年05期
9 孟邱;张宇;闫慧;黄玮;丛玉凤;;一种咪唑啉季铵盐的合成[J];应用化工;2011年08期
10 王征;李本高;杜鹤;;环烷酸盐对环烷酸腐蚀性的影响及原因[J];石油学报(石油加工);2011年03期
相关硕士学位论文 前3条
1 陶子元;克炼环烷酸磺化制备双官能团表面活性剂的研究[D];中国石油大学(华东);2013年
2 戴倩倩;咪唑啉缓蚀剂的合成及复配研究[D];西南石油大学;2012年
3 潘言亮;大分子环烷酸酯的合成与工艺研究[D];新疆大学;2011年
,本文编号:2069560
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2069560.html