面向广义能量效率的数控加工系统优化模型及方法研究
本文选题:广义能量效率 + 数控加工系统 ; 参考:《重庆大学》2015年博士论文
【摘要】:我国是制造业大国,而制造业仍处于以高能耗、高污染、高排放为主要特征的粗放型发展模式,制造业能耗占全国能耗总量比例相当大;能耗量大、能量效率低、碳排放量大是我国制造业当前面临的严峻问题。数控加工系统是由数控机床、工件、刀具、工装夹具以及各种辅助设施构成的典型制造系统,在数控加工过程中涉及大量能量和物料消耗。随着我国制造业数控化率的进一步提升,迫切需要从系统的层面对数控加工系统的能量消耗特征以及优化模型展开研究,实现系统能效的提升。本论文结合国家高技术研究发展计划(863计划)课题“机床产品机械加工制造系统能效优化提升技术及应用”(2014AA041506)和国家自然科学基金面上项目“面向广义能量效率的数控加工工艺规划理论与方法研究”(51475059)等课题,从广义能量效率的角度出发,对数控加工系统优化模型及方法展开研究。首先,在分析数控加工系统能量消耗特点的基础上,提出数控加工系统广义能量消耗的概念,并从直接能耗和间接能耗两个方面对数控加工系统能量消耗进行分类与计算,建立数控加工系统的广义能耗模型;进而,提出广义能量效率的概念,并通过能量利用率和比能两种形式来进行表达;基于所提出的数控加工系统广义能耗模型,从工艺参数、工艺路线和车间作业调度三个层次出发,建立面向广义能量效率的数控加工系统能效优化框架模型。其次,针对数控加工系统工艺参数选择对能量消耗的影响,构建面向工艺参数的数控加工系统广义能效模型;基于此,以加工过程时间和能效作为优化目标,建立集成数控加工系统广义能效与加工时间的工艺参数多目标优化模型,采用改进的非支配遗传算法对该模型进行求解,并采用仿真实验的方式揭示工艺参数与数控加工系统广义能效的映射关系。以某长传动轴的工艺参数优化过程,对所建立的模型进行应用,以验证面向广义能量效率的工艺参数优化模型的节能性。再次,在采用特征元素对数控加工工艺路线进行表达的基础上,针对工艺路线与能量消耗的关系,建立面向数控加工工艺路线的广义能效模型,并考虑以实现能效提升、时间效率提升为优化目标,建立集成广义能量效率与时间效率的数控加工系统工艺路线多目标优化模型,并采用遗传算法对该模型进行求解;以圆柱齿轮加工为例,对其数控加工工艺路线进行优化分析,以实现能效提升。然后,针对数控加工车间作业调度问题对能量消耗的影响,建立面向车间作业调度的数控加工系统广义能效模型;以车间作业调度的广义能量效率与最小完工时间为目标,建立面向广义能效的数控加工车间作业调度问题的多目标优化模型,并采用遗传算法进行求解。最后,介绍了一种面向广义能量效率的数控加工系统能效优化支持系统。该系统可以辅助用户查询、收集、管理零件加工工艺信息以及加工过程中能效信息,为相关人员提供一套加工过程工艺参数、工艺路径和调度管理的优化方案。
[Abstract]:China is a large manufacturing country, and the manufacturing industry is still in the extensive development model with high energy consumption, high pollution and high emission. The energy consumption of manufacturing industry accounts for a large proportion of the total energy consumption in the country, the energy consumption is large, the energy efficiency is low, and the carbon emission is large. The typical manufacturing system composed of workpiece, tool, fixture and all kinds of auxiliary facilities involves a lot of energy and material consumption in the process of NC machining. With the further improvement of the numerical control rate of China's manufacturing industry, it is urgent to study the energy consumption characteristics and the optimization model of the NC machining system from the system layer. This paper combines the national high technology research and development plan (863 plan), "the technology and application of energy efficiency optimization and upgrading of machine tool manufacturing system" (2014AA041506) and the National Natural Science Foundation Project "Research on the theory and method of NC machining process planning for the generalized energy efficiency" (51475 059) on the basis of analyzing the energy consumption characteristics of NC machining system, the concept of generalized energy consumption of NC machining system is put forward on the basis of the characteristics of the energy consumption of NC machining system, and the energy dissipation of the NC machining system is eliminated from two aspects of direct energy consumption and indirect energy consumption. The consumption is classified and calculated, and the generalized energy consumption model of NC machining system is established. Then, the concept of generalized energy efficiency is proposed and expressed through two forms of energy utilization and specific energy. Based on the proposed generalized energy consumption model of NC machining system, it is built from the three levels of process parameters, process route and job shop scheduling. The framework model of energy efficiency optimization for NC machining system with generalized energy efficiency is set up. Secondly, based on the influence of process parameters selection on energy consumption of NC machining system, a generalized energy efficiency model of NC machining system oriented to process parameters is constructed. Based on this, an integrated NC machining system is set up with the process time and energy efficiency as the optimization target. The multi-objective optimization model of the process parameters of generalized energy efficiency and processing time is used to solve the model by the improved non dominating genetic algorithm. The mapping relationship between the process parameters and the generalized energy efficiency of the NC machining system is revealed by the simulation experiment. The model is carried out by the optimization process of the working parameters of a long transmission shaft. The application is to verify the energy efficiency of the process parameter optimization model for the generalized energy efficiency. Thirdly, on the basis of the expression of the numerical control process route by the feature element, the wide sense energy efficiency model for the process route of NC machining is established, and the energy efficiency improvement is considered. In order to optimize the efficiency, the multi-objective optimization model of the NC machining system with integrated generalized energy efficiency and time efficiency is set up, and the genetic algorithm is used to solve the model. The cylindrical gear processing is taken as an example to optimize the process route of its NC machining to achieve energy efficiency improvement. Then, the numerical control processing is carried out. The effect of job shop scheduling problem on energy consumption, a generalized energy efficiency model of NC machining system for job shop scheduling is established, and the generalized energy efficiency and minimum completion time of job shop scheduling are taken as the objective, and a multi-objective optimization model for the job scheduling problem of NC machining shop for generalized energy efficiency is established, and genetic calculation is adopted. The method is solved. Finally, a kind of energy efficiency optimization support system for NC machining system for generalized energy efficiency is introduced. This system can assist users to query, collect, manage parts processing technology information and energy efficiency information in processing process, and provide a set of processing process parameters, process path and scheduling management for the related personnel. Chemical scheme.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG659
【相似文献】
相关期刊论文 前10条
1 邹新宇;;面向网络的数控加工系统设计[J];电工技术;2006年06期
2 唐学飞;贺炜;刘言松;;基于网络的凸轮数控加工系统研究[J];机床与液压;2009年07期
3 孟爱英;;网络化数控加工系统现状及发展前景[J];机床与液压;2012年05期
4 刘远鹏;数控加工系统——定义和构造举例[J];组合机床通讯;1979年12期
5 周家安;余晓流;邱佩芬;;非伺服检测数控加工系统的研究[J];华东冶金学院学报;1992年03期
6 王建军;李增芳;王伟;;虚拟数控加工系统及其应用[J];浙江水利水电专科学校学报;2006年01期
7 张欣;郑永康;;一种柔性数控加工系统的概念设计[J];机床与液压;2013年15期
8 周玉成,程放,詹新生,范留芬,安源;数控木材加工系统的设计与实现[J];木材工业;2004年02期
9 张霞;;虚拟数控加工系统的构建[J];现代计算机(专业版);2009年02期
10 李国富;;高速数控加工系统的研究[J];鄂州大学学报;2008年02期
相关博士学位论文 前1条
1 易茜;面向广义能量效率的数控加工系统优化模型及方法研究[D];重庆大学;2015年
相关硕士学位论文 前10条
1 袁莎;虚拟数控加工系统的研究与开发[D];武汉理工大学;2009年
2 吴献钢;一种新型的非圆轴数控加工系统的研究与开发[D];电子科技大学;2002年
3 范志超;基于增强现实的数控加工系统虚拟注册技术研究[D];华中科技大学;2007年
4 高健;网络化制造环境下数控加工系统与集成技术的研究[D];河北科技大学;2013年
5 黄成生;字符轮廓数控加工系统的研究与开发[D];汕头大学;2007年
6 周玉昕;虚拟数控加工系统的切削仿真及加工结果评价研究[D];广东工业大学;2013年
7 宋建毅;基于CY-VMC850型加工中心的虚拟数控加工系统的构建[D];山东大学;2012年
8 姜大伟;基于OPC数控加工系统信息采集与集成[D];长春理工大学;2008年
9 姜连国;基于DSP的活塞软靠模数控加工系统设计[D];东北大学;2010年
10 李洪波;基于PLC的罗茨鼓风机叶面数控加工系统研究[D];浙江大学;2003年
,本文编号:2094889
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2094889.html