合金元素对镁合金临界剪切应力与力学行为影响的研究
[Abstract]:Magnesium alloys have attracted more and more attention because of their advantages of light weight, high specific strength, good damping and electromagnetic shielding. At room temperature, the critical shear stress (CRSS) ratio of non-basal and basal slip of wrought magnesium alloy is larger, and the independent slip system is less at room temperature, which results in poor room temperature formability of wrought magnesium alloy, especially magnesium alloy sheet. This seriously restricts the development of wrought magnesium alloys. The alloy element modification can effectively reduce the CRSS ratio of non-basal / basal slip of magnesium alloy and improve the formability of wrought magnesium alloy. In this paper, the influence of typical alloy elements on the theoretical critical shear strength (蟿 max) of magnesium crystals was studied by first principle calculation, and the corresponding magnesium alloy materials were prepared. Metallographic analysis (OM), scanning electron microscopy (SEM) X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and mechanical properties were used to investigate the evolution of microstructure and mechanical behavior of these magnesium alloys under different plastic deformation conditions. The results show that Li _ (Sn) Sn and Y are the preferred solid solution in magnesium crystal at 0211 {plane. For Mg-Li binary extruded sheet, the order of decreasing mg non-basal / basal 蟿 max ratio of unit atom is: SnLiY, and that of unit mass alloy element decreasing is: 1: LiSnY.2 for Mg-Li binary extruded sheet, the order is: 1. 0% LiSnY.2 for Mg-Li binary extruded sheet, with the increase of Li content, the order is: 1% LiSnY.2 for Mg-Li binary extruded sheet. The grain orientation of Mg-3Li alloy changed gradually from the base orientation of Mg- (1-2) Li alloy to the non-basal orientation of Mg-3Li alloy, and the elongation, work hardening index n value and strength of Mg-3Li alloy increased obviously, and the plate was deformed by 30% rolling. Anisotropy is further improved at room temperature rolling of Mg-x Li-3Al-1Zn (LAZx31HX) extruded sheet with different plastic deformation modes: 1: LAZ131 during the whole rolling process, the base plane slip and twinning are dominant in the 5% rolling process. Under deformation, cylinder slip and} 2211 {cone slip occur mainly,} 2101 {tensile twin and} 2211 {cone slip occur mainly at 10,} 2101 {tensile twin and} 1101 {compressed twin at 15,} 1101 {compressed twin and} 1101 {-} 2110 {double twin LAZ531 in 20s. Under 5% rolling deformation,} 0211 {cylinder slip and cone slip 10% and 15%,} 2110 {tensile twinning and cone slip,} 2110 {tensile twin and} 1101 {compression twin. 4Sn solution can improve the room temperature formability of pure magnesium. When the solid solution of Sn in mg is 2.5 wt.%, the formability of the alloy is the best, and the rolling reduction of as-cast alloy at room temperature can reach 22.6. The tensile strength of the extruded Mg-Sn alloy increases with the increase of Sn content. The grain size of 5Mg-0.5Sn-0.3Y alloy extruded sheet is about 77cm than that of Mg-0.5Sn alloy extruded sheet. The elongation along EDG45o and TD three directions are 30.3% and 28.1%, respectively. The tensile strength is 288MPa 286MPa, respectively. The main reason for the improvement of the microstructure and mechanical properties of the extruded sheet with 302MPa and 302MPA, and the anisotropy is not obvious. The main reason for the improvement of the microstructure and mechanical properties of the extruded sheet is that the grain size of the sheet is only about 4 渭 m due to the effect of grain refinement of the W Sn3Y5 particles during recrystallization; in magnesium matrix, the grain size is only about 4 渭 m. Both Sn and Y solution can reduce the CRSS ratio of non-base and base surface of magnesium matrix. Promote non-base slip, thereby improving the alloy plasticity.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG146.22
【相似文献】
相关期刊论文 前10条
1 聂祚仁;;铝材中合金元素的作用与发展[J];中国有色金属;2009年22期
2 向鑫;刘柯钊;陈长安;;掺杂合金元素法抑制金属中氦脆的研究进展[J];材料导报;2010年03期
3 余世浩;尉雪萍;曾辉;;型内熔化合金元素扩散的浓度方程及仿真[J];武汉理工大学学报;2011年06期
4 李虎;王作成;薛长深;庄栋栋;王晓;张思勋;;合金元素对低合金高强度H型钢Z向性能的影响[J];材料热处理学报;2013年02期
5 徐祖耀;特殊钢热处理中合金元素的作用[J];金属材料与热加工工艺;1982年01期
6 赵滨安;;向熔铝中加入合金元素的方法(上)[J];铝加工;1991年04期
7 孔凡亚;杨克努;陆永安;孙树学;;钛合金液表层中合金元素浓度分布的研究[J];金属学报;1991年05期
8 李荣春;;合金元素对珠光体长大的影响[J];武钢技术;1988年06期
9 丁峰;张焱;;合金元素对钢热处理的影响[J];热处理;2007年01期
10 魏海荣;;第四章 合金元素对钛合金性能的影响[J];稀有金属合金加工;1978年03期
相关会议论文 前8条
1 张宗乐;;合金元素对灰铸铁件质量的影响[A];2010年重庆市机械工程学会学术年会论文集[C];2010年
2 刘敬军;林鹏;胡黎宁;邸永田;;SWRH82B中合金元素的研究[A];2012年微合金钢连铸裂纹控制技术研讨会论文集[C];2012年
3 何军刚;;合金元素及热处理对ZG1Cr11MoNbV性能的影响[A];陕西省机械工程学会理化检验分会第八届年会论文集[C];2009年
4 牛文娟;邱贵宝;白晨光;;高性能钛合金低成本制备方法综述[A];2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C];2007年
5 王永利;刘实;戎利建;;TiH_2中合金元素对力学性能的影响:第一原理计算[A];第十届中国核靶技术学术交流会摘要集[C];2009年
6 于思荣;高乾;朱先勇;刘耀辉;;合金元素对耐热球铁模具材料组织及性能的影响[A];2009中国铸造活动周论文集[C];2009年
7 陶素芬;王福明;李长荣;李梦龙;金桂香;晏轻;;合金元素对EQ70海洋平台用钢中主要析出相的影响[A];2012年全国冶金物理化学学术会议专辑(上册)[C];2012年
8 武显亮;;杂质及合金元素对镁合金耐蚀性的影响[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
相关博士学位论文 前3条
1 曾迎;合金元素对镁合金临界剪切应力与力学行为影响的研究[D];重庆大学;2015年
2 张彩丽;合金元素对Mg-Li-X强/韧化作用机制的第一性原理研究[D];太原理工大学;2011年
3 陈丹丹;低频电磁铸造铝合金锭坯中的合金元素偏析研究[D];东北大学;2012年
相关硕士学位论文 前9条
1 刘国宝;合金元素影响镁合金变形模式的第一性原理计算与实验研究[D];重庆大学;2015年
2 李建春;合金元素对ZA27组织和性能的影响[D];太原理工大学;2008年
3 谷永旭;合金元素及热处理对G01铝合金组织和性能的影响研究[D];辽宁工程技术大学;2013年
4 师瑞霞;12Cr1MoV钢合金元素作用及基体性质的研究[D];甘肃工业大学;2001年
5 杨珍;合金元素Zn、Sn、In对925银组织和性能的影响[D];华中科技大学;2007年
6 陈蓉;合金元素对镁铝锌合金中间相稳定性影响的第一性原理研究[D];昆明理工大学;2012年
7 聂小武;合金元素Ni、Mo、Zr对Laves相NbCr_2化合物组织和性能的影响[D];南昌航空大学;2008年
8 冯江彪;合金元素对粉末冶金镁锌复合材料组织和性能的影响[D];辽宁工业大学;2015年
9 陈小龙;合金元素对23MnB履带钢基础性能的影响[D];昆明理工大学;2007年
,本文编号:2132775
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2132775.html