7075铝合金应力时效强化与机制研究
[Abstract]:Al-Zn-Mg-Cu aluminum alloy is a heat-treated reinforced alloy, which is widely used in aerospace and automotive structural parts. However, the traditional T6 isoaging treatment is difficult to make the alloy obtain high strength and excellent corrosion resistance. From the thermodynamic point of view, the stress is the third control materials which are parallel to the temperature and components. The systematic study of the microstructure and properties of aging aluminum alloy under elastic stress can accurately regulate the secondary phase in the alloy and provide a new experimental basis and theoretical guidance for the preparation of high comprehensive properties of aluminum alloy. This paper uses scanning electron microscopy (SEM), X ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of applied stress on the aging structure and properties of 7075 alloy 7075 alloy is studied systematically. The hardness of.7075 alloy in 160 oC stress aging is 1 h, and the hardness of the alloy reaches the maximum value at 25 MPa, 100 MPa tensile stress and 25 MPa, 112.5 MPa compressive stress, and its yield strength and tensile strength are also improved obviously. The elongation rate decreases slightly. Compared with the state without stress aging, the dispersion degree of the precipitated phase in the four stress aging conditions is higher and the average size is smaller. The tension stress promotes the growth of the larger size MgZn2 phase in the alloy and the precipitation of the ETA metastable phase, and the compressive stress also promotes the formation of the ETA stable phase, while the tensile stress inhibits the ETA phase. The tensile stress causes discontinuous distribution of the precipitates in the alloy MICROTEK boundary. The effect of temperature on the microstructure and properties of 7075 alloy 25 MPa stress aging is studied. The hardness, yield strength and tensile strength of the alloy after stress aging treatment in 120-180oC are higher than those under the same condition, and the hardness of the alloy is 150oC. At a relatively low temperature (120oC), the hardness, yield strength and tensile strength of the alloy are lower than the non stress aging state under the same condition at a lower temperature (120oC). At a higher temperature (160 oC) two, the hardness of the tensile stress aging alloy reaches the highest value of 180 HV. alloy at the 1 h of 120oC stress aging at 165 o C. After 25 MPa pulling, the compressive stress inhibits the growth of the larger size MgZn2 phase; many plate like GPII regions are precipitated in the non stress aging specimen, and a large number of eta 'flakes appear in the tensile stress aging specimen, and many of the ETA metastable phases are found in the pressure stress aging specimen; the dispersion degree of the aging precipitates in the physical specimens at each aging place is in turn the compressive stress. The aging state has no stress aging state. The average size of the precipitated phase is 3.1 nm, 6.3 nm and 12.5 nm., respectively, to study the effect of aging time on the microstructure and properties of 7075 alloy at 120 oC and 160 oC through 25 MPa stress aging. Compared with the non stress aging treatment, the 120oC pressure stress aging treatment is 1-32 h within and 160oC compressive stress. The hardness of the 1-10 h internal alloy, yield strength and tensile strength are obviously increased in.120 oC tensile stress aging 8-24 h, and the hardness of the alloy increases rapidly, and the maximum value is 191 HV at 24 h, and the yield strength and tensile strength change little; 160 oC tensile stress aging is 1-10 H internal gold hardness, yield strength and tensile strength are obviously raised. After 25 MPa tensile stress aging treatment with 25 MPa, the resistance to intercrystalline corrosion and exfoliation corrosion of the alloy was significantly enhanced. The stress aging mechanism of 7075 alloy was studied. Compared with the state of non stress aging, 25 MPa pull and pressure stress aging made the curled line dislocation and dislocation in the alloy into a straight line dislocation, and the stress increased the aging time. The nucleation rate of the precipitated phase and the dispersion degree of the precipitated phase increase and the mechanical properties of the alloy increase. 50 MPa tensile stress and 75 MPa pressure stress aging make the dislocation slip and the dislocation density lower, and the dislocation motion destroys the small size of the precipitated phase nucleation, which makes the dispersion degree of the precipitated phase to be the lowest, and the mechanical properties of the alloy changes. 100 MPa tensile stress and 112.5 MPa stress stress aging make the dislocation slip and increase a lot of increment in the alloy, the dispersion degree of the precipitated phase increases again, and the mechanical properties of the alloy are improved. Compared to the non stress aging, the 25 MPa tensile stress aging reduces the Zn/Mg value of the larger size MgZn2 phase in the alloy, and the 25 MPa pressure stress aging increases MgZ. The Zn/Mg value in the N2 phase.
【学位授予单位】:燕山大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG146.21
【相似文献】
相关期刊论文 前10条
1 湛利华;贾树峰;张姣;;电脉冲时效对7075铝合金组织和性能的影响[J];中国有色金属学报;2014年03期
2 陈健;梁欢;刘雪飘;;CuNiCoBe合金冷变形时效特性[J];材料热处理学报;2010年10期
3 王宏伟;易丹青;蔡金伶;王斌;;应力时效对2E12铝合金的力学性能和微观组织的影响[J];中国有色金属学报;2011年12期
4 陈绮伦;铍青铜弹性零件时效的晶界晶内特征及组织性能的实验研究[J];宇航材料工艺;1989年06期
5 朱耀明;夏海军;曹显良;;仪表用Al-Cu-Zn-Mg合金的双级时效[J];轻合金加工技术;1989年04期
6 陈志国,郑子樵,李竞舟;Al0-1.12Mg-0.66Si-0.8Cu合金热处理及微观组织研究[J];矿冶工程;2001年04期
7 李润霞,李荣德,杨秀英,李晨曦,胡壮麒;高强度铸造Al-Si-Cu-Mg合金时效特性的研究[J];铸造;2003年06期
8 高俊生;;软态分级时效对铍青铜(QBe2)断口和硬度的影响[J];昆明工学院学报;1987年04期
9 孙乃箴;刘和法;戴学礼;武清泉;;CuCo2Be高强、高导合金固溶与脱溶的研究[J];金属热处理学报;1988年01期
10 高俊生;;铍青铜(QBe2)软态分级时效的断口分析[J];金属热处理;1988年02期
相关博士学位论文 前4条
1 郭伟;7075铝合金应力时效强化与机制研究[D];燕山大学;2015年
2 李吉庆;含铜超轻镁锂合金制备及其时效析出行为研究[D];哈尔滨工程大学;2011年
3 齐福刚;Sn和Ce对Mg-Zn-Mn高强变形镁合金组织和性能的影响[D];重庆大学;2012年
4 胡少虬;大直径高强度高塑性高弹性模量铝合金研制及淬火残余应力演变规律研究[D];中南大学;2007年
相关硕士学位论文 前10条
1 高青;抗菌Al-Mg-Si合金组织与性能研究[D];山东建筑大学;2015年
2 蒋云泽;回归再时效制度对喷射成形7055铝合金组织和性能的影响[D];江苏科技大学;2015年
3 郑进城;铝硅镁合金时效理论及实验表征[D];广西大学;2008年
4 李智燕;电场时效对2E12铝合金的组织和性能的影响[D];中南大学;2009年
5 何国强;铝硅镁合金时效双峰现象与铝铜合金时效电化学表征[D];广西大学;2008年
6 周亮;形变热处理对2124铝合金蠕变时效的影响[D];中南大学;2011年
7 洪天然;电场时效对2E12铝合金和Al-4Cu合金微观组织的影响和机理[D];中南大学;2012年
8 鲁晓超;2A97铝合金蠕变时效成形研究[D];中南大学;2014年
9 冯晶;CuCr合金时效析出的第一原理计算与分子动力学模拟[D];昆明理工大学;2009年
10 贾树峰;2219铝合金电脉冲作用下的应力时效行为研究[D];中南大学;2014年
,本文编号:2145899
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2145899.html