镁合金及先进高强钢电脉冲辅助塑性成形性能研究
[Abstract]:In recent years, in order to meet the requirements of automobile lightweight, the use of magnesium alloys, advanced high strength steel (AHSS) and other light materials to manufacture automobile parts has attracted more and more attention of automobile enterprises. At the same time, the lower elastic modulus of magnesium alloy and the higher yield strength of advanced high strength steel lead to serious springback during bending deformation. These problems seriously restrict the application of these two light materials in automotive industry. The technique is a forming technique in which a current is applied to the plastic deformation zone of a material to reduce the deformation resistance and improve the plasticity of the material.The technique has been successfully applied to wire drawing, rolling and other forming processes and has achieved good results.At the same time, the current refines the grains in the material, repairs the damage and improves the surface quality. Therefore, the application of electroplastic forming technology in the stamping process of light materials has a very good application prospect. Although electroplastic forming technology has been studied for many years, the related theoretical model and practical application research are not enough. On the other hand, the exploration of electroplastic stamping process is just beginning, and the related theories and techniques need to be studied. In view of the above problems, the following work has been carried out in this paper: (1) through the AZ31B magnesium alloy and DP980 AHSS pulse. The effects of pulse current on the rheological behavior of AZ31B magnesium alloy were studied by uniaxial tensile test and isothermal uniaxial tensile test. It was proved that the electroplastic effect could reduce the flow stress and improve the plasticity of AZ31B magnesium alloy. By modifying Johnson-Cook flow stress model, the electroplastic flow stress model of AZ31B magnesium alloy considering the effect of pulse current was established, and the correctness of the model was verified by experiments. (2) The electro-pulse stress relaxation experiment and isothermal non-electric stress relaxation experiment of AZ31B magnesium alloy and QP980 AHSS were carried out. The effect of pulse current on stress relaxation behavior of QP980 high strength steel sheet was studied by experiment, and the effect of temperature on stress relaxation behavior of QP980 high strength steel sheet was analyzed. The stress relaxation model of AZ31B magnesium alloy and QP980AHSS considering the effect of pulse is deduced and established, and the correctness of the model is verified by experiments. (3) Based on the stress relaxation model and Mises yield criterion of AZ31B magnesium alloy and QP980AHSS considering the effect of pulse, the stress relaxation model under uniaxial stress state is obtained by using plane strain assumption. The model is extended to the multi-axial stress state, and the V-shaped bending springback angle prediction model assisted by electric pulse is established. The accuracy of the model is verified by experiments. The mechanism of restraining springback by electric pulse is discussed through microstructure analysis. (4) Based on the advantages of pulse current, such as reducing flow stress and improving plasticity of materials, the research and development are carried out. Several typical pulse current assisted plastic forming processes, including electric pulse assisted cylindrical drawing, roller edge wrapping and hole reaming, have been developed. The process considers the realization of forming action, the flow path of pulse current and insulation. The pulse current is successfully introduced into the plastic deformation zone of the material and is improved obviously. The above process provides a new idea for plastic forming of materials with relatively poor or difficult plasticity and has a good application prospect.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG386
【相似文献】
相关期刊论文 前10条
1 刘汉武,张志萍,宗振奇;关于“材料塑性成形学科方向”的几点思考[J];沈阳大学学报;2000年04期
2 黄珍媛,阮锋,李振南,周驰,刘斌;异型管件的逐次塑性成形研究[J];机电工程技术;2001年01期
3 王蛇小;;塑性成形的发展方向[J];包头职业技术学院学报;2001年01期
4 邵明志,赵振铎,张召铎,韩强,王家安;不锈钢板料塑性成形摩擦机理的研究[J];锻压装备与制造技术;2004年01期
5 徐新成,张水忠,廖秋慧;钢的含碳量对温塑性成形温度的影响[J];热加工工艺;2004年06期
6 郭正华,李志刚,黄重九,董湘怀;塑性成形过程摩擦测试的研究进展[J];塑性工程学报;2004年03期
7 李经天 ,董湘怀 ,黄菊花;微细塑性成形研究进展[J];塑性工程学报;2004年04期
8 崔丽华,王宝雨,胡正寰;数值模拟技术在塑性成形中的应用与发展[J];机械制造;2005年10期
9 温彤;陈霞;;塑性成形过程的缺陷分析模型及其应用[J];锻压装备与制造技术;2006年04期
10 葛恩德;周清;赵亚西;;微塑性成形的基础研究[J];电加工与模具;2008年03期
相关会议论文 前10条
1 于德弘;赵升吨;李军;邢光汉;王孙安;;塑性成形总体物理模拟技术及其应用[A];中国机械工程学会锻压学会第六届学术年会论文集[C];1995年
2 李雷;谢水生;;非协调元在塑性成形中的应用[A];第十届全国青年材料科学技术研讨会论文集(C辑)[C];2005年
3 陈国学;曹长征;刘晓龙;耿健;;精密塑性成形模拟仿真的若干问题[A];第八届全国塑性加工学术年会论文集[C];2002年
4 鲍光润;;尺度效应研究现状概述[A];2008年安徽省科协年会机械工程分年会论文集[C];2008年
5 蔡改贫;姜志宏;翁海珊;;低频振动塑性成形黏弹塑性模型的体积效应分析[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
6 孙博;胡耀波;;金属板材单点渐进塑性成形过程的计算机模拟[A];2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C];2007年
7 李洪波;张玉华;;直齿内齿轮精密塑性成形新工艺的三维数值模拟[A];2005年全国计算材料、模拟与图像分析学术会议论文集[C];2005年
8 齐红元;朱衡君;邱成;杨江天;;椭圆异型挤压塑性成形映射理论及模腔优化解析[A];第七届北京青年科技论文评选获奖论文集[C];2003年
9 黄珍媛;阮锋;李振南;;Pro/Engineer在板材数控逐次塑性成形中的应用[A];制造业与未来中国——2002年中国机械工程学会年会论文集[C];2002年
10 黄珍媛;阮锋;李振南;;Pro/Engineer在板材数控逐次塑性成形中的应用[A];第八届全国塑性加工学术年会论文集[C];2002年
相关博士学位论文 前2条
1 解焕阳;镁合金及先进高强钢电脉冲辅助塑性成形性能研究[D];上海交通大学;2015年
2 闫小青;塑性成形中非局部摩擦的数值分析与实验[D];南昌大学;2008年
相关硕士学位论文 前10条
1 马宁;微细塑性成形中的尺度效应及计算机模拟技术研究[D];华中科技大学;2005年
2 张军;微细塑性成形实验方法及技术研究[D];华中科技大学;2005年
3 汪继勇;塑性成形有限元方法中数学工具的开发[D];武汉理工大学;2008年
4 李经天;微细塑性成形实验技术研究[D];华中科技大学;2004年
5 卫定;H62微塑性成形尺度效应及数值模拟研究[D];合肥工业大学;2008年
6 苏晓斌;典型车用壳体零件温塑性成形摩擦润滑特性研究[D];上海工程技术大学;2014年
7 董培龙;微塑性成形本构关系及超薄板微弯曲成形研究[D];江苏大学;2009年
8 张超;晶体塑性成形的数值模拟[D];山东大学;2005年
9 朱卉;大克重钢制平衡块温塑性成形CAE分析[D];上海工程技术大学;2012年
10 刘革;42CrMo钢塑性成形中的损伤开裂研究[D];中南大学;2011年
,本文编号:2176923
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2176923.html