渐进式粘磨层气压砂轮及软磨削试验
[Abstract]:Laser hardening technology can greatly improve the hardness and wear resistance of mould surface, so it is more and more widely used in die manufacturing industry. The maximum precision of machining workpiece with single mesh abrasive grinding wheel head is limited, and the roughness range of machining workpiece is narrow. In actual finishing, the manual replacement of different grinding wheel heads is often used to process the workpiece step by step. This method does not meet the purpose of automatic machining, and the processing efficiency is low. In order to solve the problem of single layer viscous grinding layer pneumatic grinding wheel. In this paper, a kind of progressive pressure grinding wheel is proposed and fabricated. The idea of layered progressive polishing is adopted. The adhesive layer is mainly composed of 80#Li 120 #Li #3 layers with different mesh number of abrasive particle binders. There are corresponding finishing zones in different mesh number of glued grinding layers. After the outer layer is finished, the new abrasive particles in inner layer are gradually exposed for subsequent processing. The new pneumatic grinding wheel not only avoids the change of workpiece surface processing grain when the grinding wheel head is replaced, but also greatly improves the efficiency and automation of finishing. The specific research contents are as follows: (1) by analyzing the composition of the pneumatic grinding wheel: this paper adopts the hemispherical pneumatic grinding wheel structure, the outer diameter of the matrix layer is 40mm, and the rubber matrix is reinforced by short fiber. The optimum thickness of the rubber layer is 3 mm and the thickness of the adhesive layer is 2. 5 mm. By analyzing the relationship between the preparation efficiency and the processing efficiency, the optimum layer number of the three layers is determined by analyzing the relationship between the layer number of the viscous grinding and the processing efficiency) and the flexible deformation of the three layers is analyzed during the dynamic contact process of the pneumatic grinding wheel. The mechanical model of progressive viscous layer pneumatic grinding wheel is established and simulated. By changing the rotational speed and charging pressure, the influence of rotational speed and inflation pressure on the stress and overall strain of each layer is analyzed, and the dangerous surface of pneumatic grinding wheel is obtained. The suitable processing parameters: inflatable pressure P=0.1MPa and rotational speed V1 250 rpm are obtained, and the rationality of the design is verified. 3) aiming at the pressure grinding wheel with different thickness and different mesh number of abrasive particles, a preparation scheme of the progressive pressure grinding wheel for the viscous layer is put forward. Through the experiments of surface processing quality and abrasive particle shedding of three kinds of monolayer air pressure grinding wheel with different mesh number, the thickness of different adhesive layer is determined to be 2mm / 0.21mm / 0.3mm. The preparation of short fiber reinforced rubber matrix and the pressing of gluing layer were further expounded. KEYENCE VHX-600E digital microscope was used to observe the profile of pressure-pressure grinding wheel. The thickness of different layer is consistent with the theoretical value, and the error is less than 5%. The most suitable process parameters of P=0.1MPa and V=1250rpm are obtained by experiments, and the simulation results are verified. In the actual finishing, the grinding process is stable without replacing the grinding wheel head, and the surface quality of the traditional pneumatic grinding wheel is reduced due to the change of cutting lines caused by the replacement of the pneumatic grinding wheel. At the same time, compared with the 180# single-layer pneumatic grinding wheel, the efficiency of finishing the new progressive pneumatic grinding wheel at the initial stage is increased by 34.6%, and the machining efficiency is increased by 19% compared with the replacement of the grinding wheel head. The research ideas and results of this paper provide a certain guiding significance for the preparation of the progressive viscous layer pneumatic grinding wheel with other structures and the realization of nanoscale machining of the free-form surface of the mould strengthened by laser, which has certain technical reference value.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG743
【相似文献】
相关期刊论文 前10条
1 傅玉灿,徐鸿钧;高效磨削用砂轮地貌的优化设计研究[J];应用科学学报;2001年01期
2 赵纪明,邓协和;砂轮产品的质量状况分析[J];机械制造;2003年07期
3 惠军涛,邓小玲,范全堂;超硬材料砂轮的修整技术[J];矿山机械;2004年02期
4 林影丽;磨削砂轮状态在线监测方法研究[J];制造技术与机床;2005年08期
5 林影丽;磨削砂轮状态在线监测方法研究[J];机械工程师;2005年10期
6 李宝膺;华丽;;高品质玉石抛光砂轮的研制[J];超硬材料工程;2006年04期
7 张素香;王登化;陈剑飞;;一元线性回归分析方法在评价砂轮地貌中的应用[J];机械制造;2007年03期
8 邓朝晖;伍俏平;张高峰;张璧;;新型砂轮研究进展及其展望[J];中国机械工程;2010年21期
9 欧阳军;;砂轮的工作原理[J];企业导报;2011年07期
10 马可;傅玉灿;徐鸿钧;;热管砂轮传热性能的数学分析[J];工具技术;2011年07期
相关会议论文 前7条
1 李刚;白云利;;变频技术在砂轮制造业的应用[A];2000年晋冀鲁豫鄂蒙六省区机械工程学会学术研讨会论文集(河南分册)[C];2000年
2 王红军;李改利;;基于激光的砂轮地貌检测技术研究[A];北京机械工程学会2008年优秀论文集[C];2008年
3 王红军;李改利;;基于激光的砂轮地貌检测技术研究[A];第四届十三省区市机械工程学会科技论坛暨2008海南机械科技论坛论文集[C];2008年
4 吴永孝;张广玉;吕维新;徐建良;;超声波振动修整砂轮的研究[A];中国电子学会生产技术学分会机械加工专业委员会第六届学术年会论文集[C];1995年
5 贺献宝;;利用PVA砂轮提高工件表面粗糙度等级[A];晋冀鲁豫鄂蒙川云贵甘沪湘十二省区市机械工程学会学术年会论文集(河南分册)[C];2005年
6 王先逵;马明霞;应宝阁;;金属结合剂金刚石微粉砂轮电火花修锐技术研究[A];第八届全国电加工学术年会论文集[C];1997年
7 余剑武;何利华;尚振涛;尹韶辉;黎文;覃新元;;微细砂轮电火花修整实验研究[A];第15届全国特种加工学术会议论文集(上)[C];2013年
相关重要报纸文章 前2条
1 李长江;分切薄刀和砂轮的选用及使用方法[N];中国包装报;2006年
2 刘平;百名专家解读百种产品质量[N];中国质量报;2010年
相关博士学位论文 前9条
1 李晓冬;砂轮在线液体自动平衡系统及其平衡精度的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2004年
2 曾晰;软固结磨粒气压砂轮设计方法及材料去除特性研究[D];浙江工业大学;2013年
3 张小锋;关于砂轮地貌双目视觉检测技术的基础研究[D];南京航空航天大学;2007年
4 袁和平;磨料群可控排布砂轮的制备技术及其磨削性能[D];大连理工大学;2010年
5 赫青山;热管砂轮高效磨削加工技术研究[D];南京航空航天大学;2013年
6 庞子瑞;超高速点磨削陶瓷CBN砂轮性能的实验研究[D];东北大学;2009年
7 李长河;砂轮约束磨粒喷射精密光整加工机理及表面特性的研究[D];东北大学;2006年
8 刘月明;磨削过程建模与点磨削工艺的若干研究[D];东北大学;2012年
9 杨晓红;不平衡量信号的精密谱分析及其在砂轮动平衡测控仪中的应用[D];中国科学院研究生院(长春光学精密机械与物理研究所);2006年
相关硕士学位论文 前10条
1 王改民;新型树脂切割砂轮的研制[D];郑州大学;2001年
2 吴春香;智能砂轮半自动平衡装置软硬件开发[D];山东大学;2007年
3 魏于评;不平衡量对砂轮跳动影响的研究[D];华侨大学;2011年
4 王明;基于磁控磨粒均布的微细砂轮制备方法研究[D];湖南大学;2011年
5 游永丰;基于磁场控制的微细砂轮制备及其磨削性能研究[D];湖南大学;2013年
6 李志明;硅晶体低损伤磨削砂轮的研制[D];大连理工大学;2012年
7 丁洁瑾;软固结磨粒气压砂轮的优化设计及性能试验[D];浙江工业大学;2012年
8 郗元;砂轮不平衡量检测相关技术研究[D];长春工业大学;2013年
9 何浩;超高速砂轮的安全性研究[D];湖南大学;2014年
10 戴婷;冠型软固结磨粒气压砂轮接触应力分析与试验研究[D];浙江工业大学;2015年
,本文编号:2183566
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2183566.html