压铸模数学模型及测温试验研究
[Abstract]:The service life of die-casting die is an important part of die-casting cost. Thermal fatigue failure is the main factor affecting die casting die life. The heat load on the surface of the die casting die is mainly from the heat conduction of the die casting and the cooling of the release agent. The temperature of the surface layer of the die casting varies regularly with the period of the die casting. The periodic temperature change will lead to periodic thermal stress. When the thermal stress exceeds the yield strength of the material, the mold will produce plastic deformation, and then after enough cycle period, the crack will initiate and eventually lead to fatigue failure. Therefore, it is of great significance to study the surface temperature field, thermal stress field, thermal fatigue life and depth of thermal fatigue zone in order to find out the failure mechanism of die. In this paper, the characteristics of die casting and the selection of process parameters are summarized, and the research status of die failure mechanism at home and abroad is introduced. It is found that temperature gradient is the key factor leading to thermal fatigue. Based on the theory of unsteady heat transfer, the surface contact heat transfer model of one-dimensional semi-infinite body is established, and the temperature field model of the cavity surface of die casting is constructed. Taking zinc alloy, aluminum alloy and copper alloy as examples, the curve of temperature change is drawn. According to the thermoelastic-plastic theory, a thin plate model is established, which accords with the changing law of thermal stress of die casting die. Combined with the temperature field model, the thermal stress field model of die cavity surface during continuous die casting is constructed. The curves of thermal stress change during die casting of three different alloys were plotted. Based on the study of thermal fatigue generation mechanism, the formula for calculating thermal fatigue life is obtained, and the method for calculating the depth of thermal fatigue zone is given. The results show that the depth of thermal fatigue zone on the surface of the die is 3 mm during die casting of copper alloy. Finally, the casting test of zinc alloy, aluminum alloy and copper alloy was carried out by using metal mould, and the temperature change curves were measured at the distance of 0.2 ~ 1.5N ~ 3.0 and 5.0mm from the surface of the die respectively. Compared with the theoretical model of temperature field, the correctness of the model is verified.
【学位授予单位】:武汉科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG241
【相似文献】
相关期刊论文 前10条
1 杨波;;压铸模专利文献的竞争情报价值研究——我国金属压铸模专利分析[J];情报探索;2010年05期
2 ;我国中高档压铸模的发展成为产业突破重点[J];模具工业;2012年10期
3 周忠沪;铝压铸模用新材料[J];模具通讯;1982年01期
4 孙思鸿;;压铸模的活门式退料机构[J];新技术新工艺;1982年04期
5 张克惠;楔形压铸模分析[J];工程塑料应用;1985年03期
6 王洁民;影响压铸模寿命的材料因素[J];模具工业;1987年02期
7 尤显卿;铝压铸模的热疲劳失效及对策[J];模具工业;1991年01期
8 谢燮揆;;压铸模的电辐射处理[J];机械制造;1991年08期
9 邢俊德;国外压铸模材料的最新进展[J];机械工程材料;1992年02期
10 王文华;;转子压铸模的一种简易结构[J];模具技术;1993年04期
相关会议论文 前10条
1 岳崇焕;;压铸模应用4CY5M_0 V_1 Si材料的体会[A];中国电子学会北京热处理学组模具新材料应用推广研讨会论文集[C];1992年
2 董应明;;浅谈如何提高压铸模寿命[A];2009重庆市铸造年会论文集[C];2009年
3 祁向东;张名涛;胡正平;张建基;郑黎峰;;大型压铸模结构设计改进浅谈[A];2014(第24届)重庆市铸造年会论文集[C];2014年
4 李开章;;压铸模的失效及其预防[A];第四届金属材料及热处理年会论文集(下)[C];1991年
5 周凌;;转子压铸模结构改进[A];天津市电视技术研究会2013年年会论文集[C];2013年
6 肖方栋;;陶瓷热压铸模的浇铸口[A];工模具设计与制造资料汇编[C];1980年
7 俞宝善;;铝合金压铸模材料及其热处理[A];第四届金属材料及热处理年会论文集(上)[C];1991年
8 熊孝国;;压铸模热平衡的建立[A];2012(第22届)重庆市铸造年会论文集[C];2012年
9 崔伟;万均;冉燕;;压铸模的快速换模运用与研究[A];2011重庆市铸造年会论文集[C];2011年
10 黄松柏;;热压铸模放尺公式的探讨[A];工模具设计与制造资料汇编[C];1980年
相关重要报纸文章 前1条
1 特约记者 俞任南;全国首家压铸模工程技术中心建立[N];中国经济时报;2000年
相关硕士学位论文 前3条
1 马文超;压铸模数学模型及测温试验研究[D];武汉科技大学;2016年
2 侯晓霞;提高压铸模用钢H13使用寿命的研究[D];山东大学;2005年
3 董军刚;大型复杂压铸模模温控制关键技术的研究与开发[D];华中科技大学;2010年
,本文编号:2230762
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2230762.html