当前位置:主页 > 科技论文 > 金属论文 >

钯镍合金纳米粒子点阵的制备及其氢传感特性

发布时间:2018-11-03 17:07
【摘要】:金属合金纳米粒子在一定程度上能改善纯金属纳米粒子的一些物理化学性能。Pd纳米粒子点阵具有吸氢响应特性,当在Pd纳米粒子中掺入其他金属纳米粒子后,将影响其吸氢动力学特性,有效改善其吸氢响应特征。本论文通过制备钯镍合金纳米粒子点阵,对其合金的吸氢动力学特性进行了研究。本论文使用双靶材共沉积团簇束流技术制备了钯镍合金纳米粒子点阵。制备出来的样品,尺寸分布均匀,结晶性好,并且随着样品中Ni含量的增加,合金纳米粒子点阵的平均粒径逐渐增大。本文研究了钯镍合金纳米粒子中二元合金的存在形式,发现制备出来的合金样品以混溶结构存在,合金(111)面的面间距随着二元合金纳米粒子中镍含量的增加而增大。本论文还研究分析了钯镍合金纳米粒子点阵的吸氢响应特性。研究表明钯镍合金纳米粒子点阵对一个大气压内的氢气吸氢响应可以分为三个区域,从低气压到高气压分别对应钯氢化物的α相、α相-β相和β相。当样品中的Ni含量大于60%时,样品不再有吸氢响应的特征。当氢气气压处在氢化物的α相时,阵列的电导随氢气压强呈线性增加,变化缓慢;当氢气气压处在氢化物的α相-β相时,钯镍合金纳米粒子产生剧烈膨胀,电导的变化率也随之迅速增加;当氢气气压处在氢化物的β相时,阵列的电导继续随氢气压强而增加,但变化率非常小。在α相区域,对应于同一个压强,样品的相对电导值随着Ni含量的增加呈现出先增大后减小的趋势,当Ni的含量在25%的时候,其相对电导值最大;在α相到β相的转变区域内,合金样品的相对电导变化趋势基本能保持一致;在p相区域时,对应于同一压强样品的相对电导值随着Ni含量的增加呈现出先减小后增大的趋势。综合考虑,25%Ni含量的样品是Pd/Ni合金样品中性能表现最优的。本论文还将钯镍合金纳米粒子点阵的吸氢响应特性与纯Pd合金纳米粒子点阵的吸氢响应特性进行了比较,研究表明,钯镍合金纳米粒子点阵将α相的线性响应区域拓展到2kPa之外,有利于低气压范围内的氢气测量;钯镍合金纳米粒子点阵在氢气浓度4%的爆炸极限区域内能产生非常高的响应,对于氢气爆炸极限的监测有很重要的意义。钯镍合金纳米粒子点阵与纯Pd纳米粒子点阵对氢气都能产生一个较快速的响应,但在α-β相变区间内,响应时间有所延迟。随着样品中Ni含量的增加,样品的响应时间在整体趋势上呈现出先减小后增大的现象,当Ni含量达到25%时,响应时间达到最小值,并且比纯Pd样品的响应时间要短。对传感器的稳定性进行了测试。随着吸放氢的循环次数的增加,传感器对氢气的电导响应的基线恢复得以改善。传感器在空气中置放两个半月,显示出较好的稳定性。
[Abstract]:To some extent, metal alloy nanoparticles can improve some physical and chemical properties of pure metal nanoparticles. Pd nanoparticles have the characteristics of hydrogen absorption response. When other metal nanoparticles are mixed in Pd nanoparticles, The kinetic characteristics of hydrogen absorption will be affected and the response characteristics of hydrogen absorption will be improved effectively. In this paper, the hydrogen absorption kinetics of palladium-nickel alloy was studied by preparing nano-particle lattice. In this paper, the palladium-nickel alloy nanoparticles lattice was prepared by double-target co-deposition cluster beam technique. The size distribution and crystallinity of the prepared samples are uniform and the average particle size of the alloy nanoparticles increases with the increase of Ni content. In this paper, the existence form of binary alloy in palladium nickel alloy nanoparticles is studied. It is found that the prepared alloy sample exists in miscible structure, and the surface spacing of alloy (111) increases with the increase of nickel content in binary alloy nanoparticles. The hydrogen absorption response of palladium-nickel alloy nanoparticles was also studied in this paper. The results show that the lattice response of palladium and nickel alloy nanoparticles to hydrogen absorption at one atmospheric pressure can be divided into three regions, from low pressure to high pressure, corresponding to 伪 phase, 伪 phase 尾 phase and 尾 phase of palladium hydride, respectively. When the Ni content in the sample is greater than 60, the sample no longer has the characteristics of hydrogen absorption response. When the hydrogen pressure is in the 伪 phase of the hydride, the conductance of the array increases linearly with the hydrogen pressure and changes slowly. When the hydrogen pressure is in the 伪-尾 phase of the hydride, the Pd-Ni alloy nanoparticles expand rapidly and the change rate of conductivity increases rapidly. When the hydrogen pressure is in the 尾 phase of the hydride, the conductance of the array continues to increase with the hydrogen pressure, but the change rate is very small. In the 伪 phase region, corresponding to the same pressure, the relative conductance value of the sample increases first and then decreases with the increase of Ni content. When the content of Ni is 25%, the relative conductance value of the sample is the largest. In the transition region from 伪 phase to 尾 phase, the change trend of relative conductance of alloy samples is basically consistent, and in the p phase region, the relative conductance value corresponding to the same pressure sample decreases first and then increases with the increase of Ni content. Taken into account, the 25%Ni content of the sample is the Pd/Ni alloy sample performance is the best. In this paper, the hydrogen absorption response of palladium nickel alloy nanoparticles lattice is compared with that of pure Pd alloy nanoparticles. The lattice of palladium and nickel alloy nanoparticles extends the linear response region of 伪 phase beyond 2kPa, which is favorable for hydrogen measurement in low pressure range. Palladium nickel alloy nanoparticles lattice can produce a very high response in the limit region of hydrogen concentration of 4%, which is of great significance for the monitoring of hydrogen explosion limit. Both palladium and nickel alloy nanoparticles and pure Pd nanoparticles can produce a rapid response to hydrogen, but the response time is delayed in the 伪-尾 phase transition region. With the increase of Ni content in the sample, the response time of the sample decreases first and then increases. When the Ni content reaches 25%, the response time reaches the minimum value, and the response time is shorter than that of the pure Pd sample. The stability of the sensor is tested. As the cycles of hydrogen absorption and desorption increase, the baseline recovery of the sensor's conductance response to hydrogen is improved. The sensor is placed in the air for two and a half months, showing good stability.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;TG146.36

【相似文献】

相关期刊论文 前10条

1 张年军;王瑞祥;;钯、镍或钯镍合金镀层剥落法[J];电镀与环保;1985年06期

2 夏振华;;钯镍合金电镀[J];防腐与包装;1986年03期

3 夏振华;;钯镍合金电镀[J];防腐与包装;1986年03期

4 郭艳丽;王艳芳;郭超;牛超;;钯镍合金镀层特性研究[J];新技术新工艺;2011年07期

5 张明英;;钯镍合金电镀液的测定[J];电子工艺技术;1986年09期

6 张明英;原子吸收分光光度法测定钯镍合金电镀液中钯和镍[J];冶金分析;1989年06期

7 吴柏铭;郁祖湛;徐忠伦;;滚镀钯镍合金闪镀金新工艺研究[J];电镀与环保;1990年05期

8 岳俊培;杨防祖;田中群;周绍民;;钯镍合金在玻碳电极上电结晶机理[J];物理化学学报;2011年06期

9 贾文楼;;滚镀钯镍合金闪镀金工艺通过部级鉴定[J];军民两用技术与产品;1989年03期

10 张年军;;钯镍合金电镀溶液[J];电镀与环保;1986年02期

相关会议论文 前2条

1 岳俊培;杨防祖;田中群;周绍民;;不同镍含量钯镍合金电镀及性质表征[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

2 Sascha Berger;Uwe Manz;Frank Oberst;;新型无氨无氯钯镍合金高速电镀液[A];2011年全国电子电镀及表面处理学术交流会论文集[C];2011年

相关硕士学位论文 前2条

1 彭星;钯镍合金纳米粒子点阵的制备及其氢传感特性[D];南京大学;2015年

2 苑娟;电化学阶边精饰法合成钯镍合金纳米线的研究[D];湖南大学;2005年



本文编号:2308405

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2308405.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户79374***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com