当前位置:主页 > 科技论文 > 金属论文 >

纳米多晶金属的弹性和热力学性质研究

发布时间:2018-11-05 08:30
【摘要】:纳米材料指晶粒尺寸在1-100nm之间的物质,纳米材料正成为一种新型材料,广泛地应用于各个领域。纳米金属由于其区别于粗晶的特殊性质而引起了人们广泛关注,例如其增长的硬度、屈服应力、超强的韧性,与粗晶相比变大的扩散系数、优良的耐磨性等。相比于粗晶,纳米多晶材料的杨氏模量减小、定容热容增大,了解纳米多晶金属的弹性及热力学性质有助于提升纳米材料在各个领域的应用价值。本文主要包含两部分研究内容,首先用Voronoi几何法搭建不同晶粒大小的纳米多晶金属铝和铜样本,并对初始结构进行弛豫来降低由大角度晶界带来的高应力和高能量。在弛豫过程中监测了体系结构、平均能量、平均内应力等在各个过程的变化情况,对比分析了不同晶粒样本在同一弛豫过程的变化趋势。画出了初始结构与弛豫后样本的结构图,发现晶界原子所占比例发生了变化,最终获得了稳定的结构;其次,用经典分子动力学模拟方法对比了施加微小应变时纳米多晶与单晶的冷能曲线,计算分析了晶粒大小对纳米多晶金属铝和铜的弹性常数和一些热力学参数的影响。通过对体系施加微小的拉伸或压缩应变,画出了对应的冷能曲线,并与相应的单晶曲线图进行了对比,发现图形形状基本一致,微小差别可能由于晶界引起的,说明了模拟方法的可行性。计算弹性常数选用的是恒压分子动力学方法,在晶粒粒径小于10nm时,发现体系的硬度随着尺寸的减小而变软,与反Hall-Petch效应吻合。样本的拉伸强度随着晶粒的增大变得更难,压缩程度则相对变得容易。根据热力学参量与独立弹性常数的关系,得出剪切模量、泊松比、德拜温度等热力学值,使我们更深入的认识小晶粒粒径纳米材料的抵抗形变、塑性变形、刚性和延性等性质。通过详细分析小粒径纳米多晶金属的弹性和热力学性质,可以使人们更全面的认识微小纳米材料,为更好的应用纳米材料提供了有力保障。
[Abstract]:Nanomaterials refer to materials with grain size between 1-100nm. Nanomaterials are becoming a new type of materials and are widely used in various fields. Nanometallic materials have attracted much attention due to their special properties different from coarse grains, such as their increasing hardness, yield stress, super toughness, large diffusion coefficient compared with coarse grains, excellent wear resistance and so on. Compared with coarse crystals, the Young's modulus of nanocrystalline materials decreases and the heat capacity of nanocrystalline materials increases. Understanding the elastic and thermodynamic properties of nanocrystalline metals is helpful to enhance the application value of nanocrystalline materials in various fields. This paper mainly consists of two parts. Firstly, the samples of nanocrystalline aluminum and copper with different grain sizes are constructed by Voronoi geometry method, and the initial structure is relaxed to reduce the high stress and high energy caused by large angle grain boundary. The changes of system structure, average energy and average internal stress in each process were monitored during the relaxation process, and the variation trends of different grain samples in the same relaxation process were compared and analyzed. The structure diagram of the initial structure and the relaxed sample is drawn. It is found that the proportion of the grain boundary atoms has changed and finally the stable structure has been obtained. Secondly, the cold energy curves of nanocrystalline polycrystalline and single crystal are compared by classical molecular dynamics simulation method, and the effect of grain size on elastic constants and some thermodynamic parameters of nanocrystalline aluminum and copper are calculated and analyzed. The corresponding cold energy curves are drawn by applying small tensile or compression strain to the system, and compared with the corresponding single crystal curves, it is found that the figure shape is basically the same, and the slight difference may be caused by the grain boundary. The feasibility of the simulation method is illustrated. The constant pressure molecular dynamics method is used to calculate the elastic constants. When the grain size is smaller than 10nm, it is found that the hardness of the system softens with the decrease of the size, which coincides with the inverse Hall-Petch effect. The tensile strength of the sample becomes more difficult with the increase of grain size, and the compression degree becomes relatively easy. According to the relationship between thermodynamic parameters and independent elastic constants, the thermodynamic values such as shear modulus, Poisson's ratio, Debye temperature and so on are obtained, which makes us know more about the resistance to deformation, plastic deformation, rigidity and ductility of nano-materials with small grain size. Through the detailed analysis of the elastic and thermodynamic properties of nanocrystalline metal with small particle size, it can make people fully understand the micro-nano materials and provide a strong guarantee for the better application of nanocrystalline materials.
【学位授予单位】:山西大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG111;TB383.1

【相似文献】

相关期刊论文 前10条

1 马文;祝文军;张亚林;陈开果;邓小良;经福谦;;纳米多晶金属样本构建的分子动力学模拟研究[J];物理学报;2010年07期

2 宋海洋;李玉龙;;堆垛层错和温度对纳米多晶镁变形机理的影响[J];物理学报;2012年22期

3 李素兰;高温高压下的纳米多晶金刚石的烧结及其特性的研究[J];金刚石与磨料磨具工程;2001年03期

4 宋晓艳,高金萍,张久兴;纳米多晶体的热力学函数及其在相变热力学中的应用[J];物理学报;2005年03期

5 梁海弋,王秀喜,吴恒安,王宇;纳米多晶铜微观结构的分子动力学模拟[J];物理学报;2002年10期

6 王智民,韩基新,刘静波;掺镧改性钛酸钡纳米多晶粉体的制备和表征[J];无机材料学报;2002年05期

7 马文;祝文军;张亚林;经福谦;;纳米多晶铁的冲击相变研究[J];物理学报;2011年06期

8 马文;陆彦文;;纳米多晶铜中冲击波阵面的分子动力学研究[J];物理学报;2013年03期

9 张凯;张路青;;特性爆炸纳米多晶金刚石及其新的理论技术(下)[J];超硬材料工程;2013年05期

10 张凯;张路青;;特性爆炸纳米多晶金刚石及其新的理论技术(上)[J];超硬材料工程;2013年04期

相关会议论文 前6条

1 涂国荣;杜光旭;周晓华;党海军;王武尚;;纳米多晶铁纤维中试技术研究[A];第六届中国功能材料及其应用学术会议论文集(8)[C];2007年

2 刘宁;苏煜;;铁电纳米多晶电-力学特性的电加载频率相关性[A];第五届全国强动载效应及防护学术会议暨复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集[C];2013年

3 成聪;陈尚达;;含孔洞纳米多晶铜变形行为的分子动力学模拟[A];中国力学大会——2013论文摘要集[C];2013年

4 张久兴;周身林;刘丹敏;包黎红;;纳米多晶稀土硼化物的研究与进展[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年

5 王晓芳;邱若沂;谢平波;赵福利;许宁生;汪河洲;;ZnO纳米多晶颗粒的受激发射及时间分辨特性[A];2006年全国光电技术学术交流会会议文集(C 激光技术与应用专题)[C];2006年

6 王晓芳;谢平波;张一帅;赵福利;许宁生;汪河洲;;ZnO纳米多晶颗粒激射模式的特性研究[A];2006年全国光电技术学术交流会会议文集(C 激光技术与应用专题)[C];2006年

相关博士学位论文 前2条

1 马文;冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究[D];国防科学技术大学;2011年

2 宋海洋;纳米多晶金属材料力学性能的模拟研究[D];西北工业大学;2014年

相关硕士学位论文 前4条

1 蒋春霞;纳米多晶铝及其复合材料微观变形机理的研究[D];大连理工大学;2015年

2 朱艳花;纳米多晶金属的弹性和热力学性质研究[D];山西大学;2016年

3 康建波;掺杂纳米多晶Si膜的低压化学气相沉积与电学特性研究[D];河北大学;2007年

4 栾彩娜;Co~(2+):Mg(Ba,Sr,Ca)Al_2O_4纳米复合材料的制备及其性质的表征[D];山东大学;2005年



本文编号:2311509

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2311509.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b476b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com