微细加工机床状态监测与控制系统的研究与实现
[Abstract]:With the increasing demand for the performance of products, micro-machining technology and machine tools are more and more used in the processing of many complex parts, such as inertial navigation gyroscope, engine piston and so on. Therefore, the development of micro-machining machine tools and efficient and reliable operation is particularly important. In this paper, the micro-machining machine tool, which is developed by our research group, has been studied and some achievements have been made in the technology and system of micro-machining machine tool status monitoring. In this paper, the structure of the machine body and the basic structure of the control system are introduced in detail. According to the design requirements of the machine tool, the hardware of the state monitoring system is analyzed and configured, including the PLC, machine tool operating table, the hydraulic pneumatic components and so on. It provides the hardware base for the state monitoring system. Based on the investigation of equipment status monitoring technology, this paper puts forward a fault tree analysis method for system development, and designs the state monitoring process. At the same time, the upper computer software is developed with .NET, and the PLC program is written. It provides technical support for machine tool integration and debugging. Based on the theoretical knowledge of heat generation and heat transfer, the thermal load parameters of the motorized spindle in machine tools are determined, and the simulation analysis of the temperature field of the motorized spindle is carried out, and the influence of the speed of the motorized spindle and the temperature of the coolant on the temperature of the motorized spindle is obtained. It provides the basic data for the temperature control of the motorized spindle, and adopts the intelligent method of support vector machine to predict the temperature of the motorized spindle. The particle swarm optimization algorithm is used to optimize the parameters of the model, and the temperature prediction model of the motorized spindle is established. In order to realize the real-time temperature control of the motorized spindle, a preliminary discussion is made.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG502
【参考文献】
相关期刊论文 前10条
1 丁世飞;齐丙娟;谭红艳;;支持向量机理论与算法研究综述[J];电子科技大学学报;2011年01期
2 雷烨;姜子运;;基于最小二乘支持向量机的机车轴承故障诊断[J];电气传动自动化;2009年06期
3 丁庆新,焦汝娟,李晓俭,高立新,高广新;数控机床远程监视与故障诊断系统[J];电气时代;2004年02期
4 谢政;王敏;范伟;邵华;;基于铣削噪声的刀具状态监测研究[J];工具技术;2008年07期
5 王保民;胡赤兵;孙建仁;刘洪芹;;高速电主轴热态特性的ANSYS仿真分析[J];兰州理工大学学报;2009年01期
6 崔长彩;李兵;张认成;;粒子群优化算法[J];华侨大学学报(自然科学版);2006年04期
7 邓三鹏;徐小力;张建新;张香玲;;基于噪声小波包络谱的数控机床主轴故障诊断研究[J];机床与液压;2009年12期
8 杨瑜;肖继学;饶莉;;数控机床分布式远程诊断系统的开发[J];机床与液压;2010年09期
9 林伟青;傅建中;许亚洲;陈子辰;;基于在线最小二乘支持向量机的数控机床热误差建模与补偿[J];计算机集成制造系统;2008年02期
10 朱凤明;樊明龙;;混沌粒子群算法对支持向量机模型参数的优化[J];计算机仿真;2010年11期
相关博士学位论文 前1条
1 田玉玲;多层免疫模型及其在故障诊断中的应用研究[D];太原理工大学;2009年
相关硕士学位论文 前5条
1 常立民;基于专家系统的汽轮机状态监测与故障智能诊断系统[D];重庆大学;2004年
2 陈庆;基于网络的数控机床的测试系统[D];西华大学;2006年
3 徐晗;电主轴温升在线检测系统的研究[D];南昌大学;2008年
4 翟大鹏;基于故障树的数控机床故障诊断系统研究[D];太原科技大学;2008年
5 周辉;数控机床常见故障诊断系统软件的开发[D];北方工业大学;2009年
本文编号:2353581
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2353581.html