高强高导Cu-Cr-Zr合金组织和性能的研究
[Abstract]:The high-strength and high-conductivity Cu-Cr-Zr alloy is widely used in integrated circuit lead frame, high-speed railway electrical contact line and aerospace and other fields. With the development of modern industrial technology, the requirement of high-strength and high-conductivity copper alloy is also higher and higher. It is necessary for us to develop new Cu-Cr-Zr alloy in time, and to study the cause and performance of the alloy. A trace rare-earth La and Y element are added on the basis of Cu-0.81Cr-0.12Zr alloy (mass percentage, the same below), the alloy ingot is prepared by adopting a vacuum induction melting method, the hot rolling is carried out after the homogenization annealing, and then the solid solution, the cold rolling and the aging treatment are carried out, The microstructure of the alloy in each process stage was analyzed by means of an optical microscope and a scanning electron microscope. The phase composition of the sample was analyzed by an X-ray diffractometer. The structure of the aging phase was analyzed by a high-resolution transmission electron microscope. The microhardness was measured by a digital-display hardness tester. The strength was measured by a universal mechanical testing machine and the conductivity was measured with a micro-ohm meter. The alloy thin strip specimens were prepared by means of the rapid solidification single-roll casting method, and the total supersaturated solid solution alloy was obtained, and the micro-hardness and the conductivity of the samples before and after the aging treatment were tested. In addition, a rod-like sample of Cu-0.81Cr alloy was prepared by liquid metal cooling and directional solidification, and the microstructure and mechanical and electrical properties of the alloy were investigated. The main conclusions are as follows: The phase composition of Cu-0.81Cr-0. 12Zr-0. 05La-0. 05Y ingot is not changed due to the addition of rare-earth, and the phases of Cu, Cr and Cu5Zr are all composed of Cu, Cr and Cu5Zr. Most of the Cr phases are in the form of Cr + Cu or in the grain boundary of Cu, and a small amount of Cr particles are distributed in the Cu matrix, and the Cu5Zr exists only at the Cu grain boundary. but the addition of rare earth elements can obviously refine the ingot structure. Cu-0.81Cr-0. 12Zr-0. 05La-0. 05Y ingot was annealed for 60 minutes at 1193 K temperature for 60 minutes, then cooled to room temperature for cold rolling at 1223 K temperature for 60 minutes, and the properties of different rolling-ratio cold-deformed alloys at different time after the series of temperature aging were investigated, and the cold deformation was found to be 60%. The microhardness of the samples treated with 773K aging treatment for 60 minutes was 186 HV and the conductivity was 81% IACS. The alloy is further subjected to cold deformation of 40%, then the alloy is aged for 30 minutes at 723K, the microhardness is increased to 203 HV, the conductivity is improved to 81.9% IACS, and the tensile strength and the elongation at this time are respectively 604 MPa and 8.5%. The precipitation of the precipitation phase and the recrystallization of the matrix Cu at 653K-698K and 743K-823K were carried out at a rate of 20K/ min by 60% cold-rolling of Cu-0.81Cr-0.12Zr-0.05La-0.05Y alloy at a rate of 20 K/ min. The microstrain of the cold-rolled Cu-0.81Cr-0.12Zr-0. 05La-0. 05Y alloy is higher than that of the pure copper, and the intensity of the (111) Cu diffraction peak in the XRD pattern decreases with the increase of the aging temperature, and (220) the intensity of the Cu diffraction peak is increasing. The Cu-0.81Cr-0.12Zr-0. 05La-0. 05Y alloy precipitates the Cu5Zr phase of the Cr-phase and the surface-centered cubic of the body-centered cubic in the aging process. In the best comprehensive performance, the partial precipitation phase is still in a co-lattice relationship with the matrix, in which the Nishiyama-Wassermann-bit directional relationship is presented between the Cr-out phase and the Cu matrix: (111) Cu// (110) Cr;[01 _ 1] Cu//[001] Cr;[2 _ 11] Cu//[1 _ 10] Cr. The fast-set Cu-0.81Cr-0.12Zr-0. 05La-0. 05Y alloy is a completely supersaturated solid solution, When the alloy is continuously heated at a rate of 20 K/ min, the heat release peak that reflects the desolvation and precipitation phase of the supersaturated solid solution starts at 655 K and ends at 688 K. The fast quenching strip has the best comprehensive performance after the time of the 773 K aging for 15 minutes: the microhardness reaches 215 HV and the conductivity is 70.6% IACS. The microstructure of the alloy after cold deformation of 60% is higher than 29HV, which shows that the hardening time is better than that of conventional solid-solution aging. The directionally solidified Cu-0.81Cr self-growing composite material is composed of a directionally arranged Cu-Cu branch (cell) crystal and a Cu + Cr eutectic reinforcement which is distributed on the grain boundary of the Cu-0. 81Cr self-growing composite material. Although the two phases in the eutectic structure are still non-oriented, the longitudinal distribution of the co-crystals along the primary Cu-Cu grain boundary in the directional solidification structure still significantly improves the strength, plasticity and electrical conductivity of the directional solidification alloy. the temperature gradient at the time of directional solidification is improved, the structure is refined, the continuity of the longitudinal direction of the sample is improved, and the mechanical and electrical conductivity of the sample can be improved. but the pulling speed is improved, the strength and the conductivity of the sample are firstly raised and then decreased, and the plasticity is firstly reduced.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG146.11
【相似文献】
相关期刊论文 前10条
1 方林;;土壤导电率的测定方法[J];资源开发与保护;1986年04期
2 Р.Петер;王秀华;;在多次压缩和剪切条件下橡胶导电率的研究[J];橡胶译丛;1989年01期
3 ;强度和导电率都高的新框架材料[J];唐山工程技术学院学报;1994年04期
4 赵荒;导电率如铜的塑料[J];塑料通讯;1994年04期
5 S.J.马瑟斯;曹子纯;;确定砂砾矿床中废料与覆盖岩厚度和范围的地球物理法[J];国外采矿技术快报;1985年17期
6 吴克义;;稀土对圆铝杆性能的影响[J];湖南有色金属;1987年05期
7 黄崇祺;储成著;丁关森;沈建华;;铝导体的硼化处理[J];上海金属.有色分册;1987年03期
8 黄崇祺;储成著;丁关森;沈建华;;铝导体的硼化处理[J];上海金属;1987年03期
9 В.И.Дырда,袁抗;橡胶制品导电率与损伤关系的研究[J];橡胶译丛;1997年03期
10 成卫兵;;热处理制度对6063铝合金导电管导电率及力学性能的影响[J];铝加工;2012年05期
相关会议论文 前7条
1 贺江平;陈星运;舒远杰;;纳米石墨片/环氧树脂高导电率复合材料的制备和性能[A];2010年全国高分子材料科学与工程研讨会学术论文集(下册)[C];2010年
2 刘勇;刘平;田保红;任凤章;;微量Ce对Cu-Cr-Zr合金性能影响[A];第三届中国热处理活动周暨第六次全国热处理生产技术改造会议论文专辑[C];2005年
3 王庆华;;内冷水处理及实际存在问题与对策[A];第四届火电行业化学(环保)专业技术交流会论文集[C];2013年
4 田保红;朱建娟;刘平;任凤章;刘勇;贾淑果;;变形及热处理后CuCr25触头材料的性能研究[A];第九次全国热处理大会论文集(二)[C];2007年
5 罗振中;;钼的应用及其发展[A];第五届海峡两岸粉末冶金技术研讨会论文集[C];2004年
6 卜银龙;;时效处理对662合金带材性能的影响[A];中国电子学会生产技术分会第五届金属材料及热处理年会论文集(二)[C];1994年
7 卜银龙;;时效处理对662合金带材性能的影响[A];中国电子学会生产技术分会金属材料及热处理专业委员会北京学组第三届年会论文集(下册)[C];1993年
相关重要报纸文章 前2条
1 ;新型材料高导电率铍青铜研制成功[N];中国有色金属报;2003年
2 ;高导铍青铜研制成功[N];中国有色金属报;2003年
相关博士学位论文 前1条
1 潘振亚;高强高导Cu-Cr-Zr合金组织和性能的研究[D];上海交通大学;2015年
相关硕士学位论文 前10条
1 张显娜;基于团簇模型的Cu-Ni-Sn系导电Cu合金成分设计与性能研究[D];大连理工大学;2015年
2 刘建彬;点焊电极用Cu-Ni-Si-Cr-Zr合金性能研究[D];南昌航空大学;2015年
3 王松伟;中等强度高导电率Al-Mg-Si合金制备工艺及组织性能研究[D];沈阳工业大学;2016年
4 吴蕾;平面亚微米导电率精确测量及其在MEMS器件无损检测中的应用研究[D];浙江大学;2011年
5 王帆;中强度高导电率Al-Mg-Si合金导线的研究[D];沈阳工业大学;2015年
6 张龙洲;边界上导电率的变化对磁流体自激发电现象中的alpha效应的影响的研究[D];山东大学;2014年
7 杨钢;高导电率微合金电工圆铝杆生产工艺开发研究[D];昆明理工大学;2006年
8 陈兰丽;高p型导电率氧化锌的设计与计算[D];江西科技师范学院;2011年
9 郭望望;非真空熔铸Cu-Cr-Zr合金组织性能研究[D];河南科技大学;2011年
10 叶於龙;过量Mg、Si元素对6101铝合金电工导线性能的影响及机制探究[D];中南大学;2014年
,本文编号:2362247
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2362247.html