微小线段高速加工的轨迹优化建模及前瞻插补技术研究
[Abstract]:High-speed machining technology is widely used in the manufacturing of aerospace, automobile, and mould. It is an important means to improve the processing quality and efficiency, and the International Institute of Production Engineering (CIRP) has identified the high-speed machining technology as one of the center of the manufacturing technology in the 21st century. The small line segment is the most widely used form of the machining path of complex curved surface parts such as the impeller, the blade, the die and the like, and the high-speed machining of the micro-segment path has become one of the core technologies of the high-speed machining of the complex curved parts. The discontinuous characteristic of the corner in the path of the micro-segment can lead to frequent acceleration and deceleration, which becomes the bottleneck of the high-speed and smooth movement of the numerical control machine. Continuous micro-segment rotation angular velocity smoothing and cross-section speed planning are the most difficult problem for continuous micro-line segment interpolation, and is still a hot spot technology for advanced numerical control system manufacturers to improve surface processing efficiency and quality. The invention provides a G-2 continuous B-spline global fairing algorithm and a interpolation technique, The method is integrated in the open-end numerical control system to realize the high-speed processing of the trace of the micro-segment, and the validity and practicability of the proposed method are verified. The main research contents and innovative results are as follows: (1) The method of continuous global fairing and linear/ spline hybrid path cross-section plus speed reduction is proposed. The data compression and G ~ 2 continuous global fairing of the path of the micro line segment are realized by using the cubic B-spline interpolation fitting algorithm, and the S-curve plus speed reduction strategy based on the deceleration characteristic equation is proposed, and the acceleration and deceleration characteristics of the machine tool and the geometric characteristics of the path of the tool path are met, A cross-segment forward speed planning is carried out on the generated linear/ spline mixing path. The method is suitable for a short and large number of dense line segment paths and smooth paths with small corners, and can greatly improve the feeding speed stability and the processing efficiency. In the ladle mold processing experiment, the method can improve the processing efficiency by about 4 times compared with the method without using the method. and (2) a three-axis tool path angle error distribution model and an angular velocity optimization method are established. in ord to obtain that transition speed of the optimal rotation angle as the target, the system setting precision is assign as the smooth approximation error and the interpolation arch high error, under the error constraint, the light of the linear path angle is realized by the B-Bezier transition curve pair (BTP), and the servo capability constraint of each axis of the machine tool is taken into account, and the real-time interpolation of the micro-segment knife path is realized by using the forward-looking function. in the mask processing experiment, the processing time can be shortened by 25%, compared with the method that does not adopt the corner error distribution model method, and the processing time can be shortened by 25% under the premise of ensuring the track precision. and (3) establishing a G-2 continuous real-time fitting method of a linear tool path under a five-axis workpiece coordinate system and a linear tool path under the working coordinate. The system setting accuracy is assigned as the light-to-close approximation error of the nose point and the knife-axis point and the high-error of the interpolation bow. Two cubic B-spline curves are inserted at the joint of the line segment, and the linear tool path under the working coordinate is fitted into the G-2 continuous double-spline track in real time. The method satisfies the conditions of approximate error constraint, parametric synchronization constraint and curvature continuous constraint, and further comprehensively considers the constraint conditions of the curve transition error and the interpolation error, the maximum tangential acceleration/ acceleration, the servo capability of each axis of the machine tool, and the like, and carries out the self-adaptive speed planning, and the high-speed machining of the five-axis micro-segment is realized. Through the simulation and experiment, the algorithm has good effect in the five-axis tool path fairing, the smooth rotation speed and the angle track precision control. (4) The experimental method of obtaining the velocity-acceleration envelope of each shaft of the machine tool by applying the positive and negative direction excitation to the servo motor is studied. By analyzing the feasible range of velocity and acceleration in the envelope graph, the maximum speed and the maximum acceleration constraint value are obtained by using the maximum matching method and the adaptive matching method, and the constraint value is applied to the interpolation operation of the numerical control system. (5) The open-end numerical control system based on multi-thread concurrent execution management and scheduling mechanism is developed, and the high-speed micro-segment interpolation algorithm is applied in this paper. The three-time B-spline global light-smoothing algorithm and the angle-based error distribution model B-Bezier-angle transition algorithm are integrated and applied in the full-digital bus-type high-end numerical control system of the Guangzhou numerical control GSK27, and the high-speed machining of the die is realized. The local fairing algorithm and the identification parameter integration of the workpiece coordinate system based on the five-axis corner error model are applied to the CNC GSK25i five-axis linkage processing numerical control system, and is applied to the machining of high-speed and complex space curve parts of the die.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG659
【相似文献】
相关期刊论文 前10条
1 谭伟明;空间椭圆的变换插补法[J];制造技术与机床;2000年07期
2 章仁义,吴焱明;空间椭圆插补方法研究[J];机械工艺师;2001年07期
3 吴光琳,林建平,李从心,阮雪榆;参数曲面的快速实时插补[J];机械制造;2002年01期
4 鲍莉,鲍剑斌,张洛平,仲志丹;插补与误差分析[J];矿山机械;2002年09期
5 富毅和;最小偏差插补方法的扩展及应用[J];浙江工贸职业技术学院学报;2003年04期
6 范进桢,秦贵林,张海英;时间分割插补法插补圆弧算法的改进[J];机械工程师;2005年07期
7 张文洁;一种新的插补方法的探索[J];机械设计与制造;2005年06期
8 徐海银;李丹;李端铃;何顶新;;隐曲线的线性和旋转插补[J];中国机械工程;2005年21期
9 施群,王小椿;步进伺服系统高效插补控制算法研究[J];电气传动;2005年03期
10 陈贵银;;比较积分法椭圆插补的研究[J];武汉船舶职业技术学院学报;2006年04期
相关会议论文 前5条
1 余予;李俊;任芝花;张志富;;标准序列法在日平均气温缺测数据插补中的应用[A];第八届全国优秀青年气象科技工作者学术研讨会论文汇编[C];2014年
2 吕强;;编写数控车、铣床加工多边形插补程序的方法[A];数控技术学术研讨会论文集[C];1999年
3 安金刚;;离线插补技术在运动控制中的应用[A];全国第十二届空间及运动体控制技术学术会议论文集[C];2006年
4 郑金兴;张铭钧;孟庆鑫;;变插补周期的数控进给速度控制算法研究[A];先进制造技术论坛暨第五届制造业自动化与信息化技术交流会论文集[C];2006年
5 谷永山;王锐;韦穗;;基于两幅视图的纵向插补方法[A];第十五届全国图象图形学学术会议论文集[C];2010年
相关博士学位论文 前8条
1 王允森;基于样条插补的高质量加工关键技术的研究[D];中国科学院研究生院(沈阳计算技术研究所);2015年
2 金永乔;微小线段高速加工的轨迹优化建模及前瞻插补技术研究[D];上海交通大学;2015年
3 叶伟;数控系统纳米插补及控制研究[D];北京交通大学;2010年
4 梅鹏;中国群死群伤火灾数据插补及快速损失评估研究[D];中国科学技术大学;2013年
5 孟书云;高精度开放式数控系统复杂曲线曲面插补关键技术研究[D];南京航空航天大学;2006年
6 刘巍;ARGO稀损数据插补与三维海洋要素场重构研究[D];西南交通大学;2012年
7 周勇;高速进给驱动系统动态特性分析及其运动控制研究[D];华中科技大学;2008年
8 郝永江;复杂参数曲线曲面加工控制与状态监测技术研究[D];天津大学;2011年
相关硕士学位论文 前10条
1 刘艳玲;调查数据无回答的插补方法及模拟比较[D];天津财经大学;2012年
2 李玲雪;缺失偏态数据下异方差模型的统计推断[D];昆明理工大学;2015年
3 李静华;基于PMM插补法的线性回归模型系数估计量的模拟研究[D];天津财经大学;2015年
4 王锦霞;基于质谱筛选差异表达蛋白的统计学方法研究[D];大连海事大学;2016年
5 赵伟;针对回归模型的缺失数据插补方法模拟分析[D];天津财经大学;2014年
6 骆新珍;基于DA插补法的线性回归模型系数估计量的模拟研究[D];天津财经大学;2014年
7 肖哲;基于STM32的嵌入式数控插补控制器的研究与实现[D];湖北工业大学;2016年
8 李珍;不完全测量信息系统的辨识研究[D];安徽工程大学;2016年
9 王伟;基于判别分析的多重插补影响因素研究[D];河北经贸大学;2015年
10 李圣瑜;调查数据缺失值的多重插补研究[D];河北经贸大学;2015年
,本文编号:2365745
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2365745.html