当前位置:主页 > 科技论文 > 金属论文 >

T91和304H锅炉管束用非晶合金涂层制备及性能研究

发布时间:2018-12-08 10:52
【摘要】:Fe基非晶合金具有高硬度和优异的耐蚀性能及较低的成本,采用热喷涂技术可以大面积制备Fe基非晶合金涂层,适合在金属结构件进行防腐处理。本文针对锅炉管束受热面腐蚀失效,依据锅炉管束服役环境设计制备Fe基非晶合金粉末,利用等离子喷涂技术在锅炉管束常用钢304H和T91基体上喷涂制备Fe基非晶合金涂层,研究涂层结构和喷涂工艺及耐蚀性之间规律性关系。通过改变喷涂功率和制备不同厚度涂层获得不同组织结构的非晶合金涂层,研究结果表明:通过不同等离子喷涂工艺,可以制备组织结构均匀一致的Fe基非晶合金涂层,涂层呈波浪状多层结构,涂层与基体之间结合紧密,结合形式以机械结合为主。涂层的XRD衍射峰表现为明显的漫衍射峰和少量的尖锐峰,涂层非晶相含量可达到70%,随喷涂功率增加,涂层非晶相含量降低,涂层厚度增加,涂层非晶相含量升高。此外,随等离子喷涂功率升高和涂层厚度增加,涂层孔隙率下降,显微硬度升高,在喷涂功率为40KW制备的厚度为200μm的非晶合金涂层具有较低的孔隙率和较高的显微硬度,分别为2%和762.4HV。电化学研究表明:非晶合金涂层在0.5mol/LH2SO4溶液和3.5%NaCl溶液中电化学腐蚀行为表现出活性溶解-钝化-过钝化的过程,涂层极化曲线特征表现为在H2SO4溶液中钝化区较宽,在NaCl溶液中腐蚀电流密度较低。随喷涂功率和涂层厚度增加,钝化区明显,腐蚀电位趋于正向移动,腐蚀电流密度降低,表明涂层抗腐蚀性能提高。分析认为,非晶合金涂层组成元素和涂层孔隙率是影响涂层耐蚀性能的主要因素,非晶成分含量略有变化对涂层耐蚀性能影响不大。非晶合金涂层与金属基体相比表现出优异的抗高温氧化和抗高温腐蚀性能。随喷涂功率的升高和涂层厚度增加,孔隙率降低,表现出较好的抗高温氧化和抗高温腐蚀性能。分析认为涂层中Cr元素在高温下与O元素生成结构致密稳定的Cr2O3保护膜层,可以阻碍高温下氧原子的扩散和腐蚀介质的接触,使试样得到充分的保护。此外,喷涂粉末中Mo、P、Ni、Si等元素改善了非晶合金涂层的结构和性能,改善了涂层在高温和腐蚀环境下的抗高温氧化性能和抗高温腐蚀性能。
[Abstract]:Fe based amorphous alloy has high hardness, excellent corrosion resistance and low cost. Thermal spraying technology can be used to prepare Fe based amorphous alloy coating in large area, which is suitable for anticorrosion treatment of metal structural parts. Aiming at the corrosion failure of heating surface of boiler tube bundle, Fe based amorphous alloy powder was prepared according to service environment of boiler tube bundle. Plasma spraying technology was used to prepare Fe based amorphous alloy coating on 304H and T91 substrates of boiler tube bundle. The regular relationship between coating structure, spraying process and corrosion resistance was studied. The amorphous alloy coatings with different microstructure were obtained by changing the spraying power and preparing the coatings with different thickness. The results showed that the amorphous alloy coatings with uniform microstructure and uniform microstructure could be prepared by different plasma spraying processes. The coating is wave-like multilayer structure. The bonding between coating and substrate is close, and mechanical bonding is the main form. The XRD diffraction peak of the coating shows obvious diffuse diffraction peak and a few sharp peak. The amorphous phase content of the coating can reach 70%. With the increase of the spraying power, the amorphous phase content of the coating decreases, the coating thickness increases, and the amorphous phase content of the coating increases. In addition, with the increase of plasma spraying power and coating thickness, the porosity and microhardness of the coating decreased. The amorphous alloy coating with the thickness of 200 渭 m prepared by spraying power 40KW had lower porosity and higher microhardness. 2% and 762.4 HV, respectively. Electrochemical studies show that the electrochemical corrosion behavior of amorphous alloy coatings in 0.5mol/LH2SO4 solution and 3.5%NaCl solution shows the process of active dissolution passivation and over-passivation. The polarization curve of the coating is characterized by a wide passivation zone in H2SO4 solution and a lower corrosion current density in NaCl solution. With the increase of spraying power and coating thickness, the passivation zone is obvious, the corrosion potential tends to move forward, and the corrosion current density decreases, which indicates that the corrosion resistance of the coating is improved. It is considered that the composition of amorphous alloy coating and the porosity of the coating are the main factors affecting the corrosion resistance of the coating, while the minor change of the amorphous composition content has little effect on the corrosion resistance of the coating. The amorphous alloy coating exhibits excellent high temperature oxidation resistance and high temperature corrosion resistance compared with the metal substrate. With the increase of spraying power and coating thickness, the porosity decreases, showing good oxidation resistance and corrosion resistance at high temperature. It is considered that the Cr element in the coating can form a dense and stable Cr2O3 protective film with O element at high temperature, which can hinder the diffusion of oxygen atoms at high temperature and the contact of corrosion medium, so that the sample can be fully protected. In addition, the structure and properties of amorphous alloy coating were improved by Mo,P,Ni,Si and other elements in the sprayed powder, and the oxidation resistance and corrosion resistance of the coating at high temperature and corrosion environment were also improved.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG174.4

【相似文献】

相关期刊论文 前10条

1 晓敏;生产非晶合金丝的新工艺[J];金属功能材料;2001年03期

2 黄智,白海洋,景秀年,王志新,王万录;非晶合金中的低温电阻率极小行为研究[J];物理学报;2004年10期

3 王晓军;陈学定;夏天东;康凯;彭彪林;;非晶合金应用现状[J];材料导报;2006年10期

4 汪卫华;;非晶合金塑性研究的新进展[J];自然杂志;2006年06期

5 李雷鸣;徐锦锋;;大体积非晶合金的制备技术[J];铸造技术;2007年10期

6 ;第4届全国非晶合金及其复合材料学术会议召开[J];科学通报;2007年23期

7 张哲峰;伍复发;范吉堂;张辉;;非晶合金材料的变形与断裂[J];中国科学(G辑:物理学 力学 天文学);2008年04期

8 伍复发;张哲峰;;非晶合金的变形与断裂行为[J];中国基础科学;2008年04期

9 侯轶轩;;浅谈非晶合金材料的变形与断裂[J];科协论坛(下半月);2009年05期

10 姜大伟;牛玉超;贾强;赵红;;非晶合金拉应力流变测量实验装置的研制[J];实验室研究与探索;2010年08期

相关会议论文 前10条

1 孙兵兵;王艳波;文军;杨海;隋曼龄;;电镜样品制备方法对非晶合金结构的影响[A];2006年全国电子显微学会议论文集[C];2006年

2 孙笠;崔振江;宋启洪;王景唐;;用于多相催化的非晶合金催化剂[A];首届中国功能材料及其应用学术会议论文集[C];1992年

3 陈艳;蒋敏强;魏宇杰;戴兰宏;;基于原子结构及相互作用势的非晶合金断裂准则[A];第十二届全国物理力学学术会议论文摘要集[C];2012年

4 肖勋;张春华;;硅钢与非晶合金使用情况的比较以及材料的改善建议[A];2010第11届中国电工钢专业学术年会论文集[C];2010年

5 房卫萍;杨凯珍;张宇鹏;刘凤美;刘正林;刘师田;易江龙;许磊;;低碳经济下的非晶合金发展与应用[A];低碳技术与材料产业发展研讨会论文集[C];2010年

6 沈宁福;张国胜;王西科;杨占胜;;大比表面积非晶合金催化材料的研究[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年

7 卢志超;李德仁;周少雄;;非晶合金丝的制备及巨磁阻抗效应的应用[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年

8 邢力谦;;非晶合金的应用及进一步研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年

9 郭文全;王景唐;;描述非晶合金粘度与其熔体粘度关系的公式[A];首届中国功能材料及其应用学术会议论文集[C];1992年

10 冯翔;杨玉英;江道祥;;非晶合金材料行业产业化发展初探[A];2011年安徽省科协年会——机械工程分年会论文集[C];2011年

相关重要报纸文章 前10条

1 谢斌 王琳;非晶合金产品前景看好[N];中国电力报;2007年

2 谢斌 王琳;顺特电气:推广非晶合金产品[N];中国电力报;2007年

3 本报记者 倪e,

本文编号:2368227


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2368227.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户36f16***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com