基于ANSYSWorkbench的变截面细长轴电解磨削分析与研究
[Abstract]:In the process of practical machining, variable cross-section slender shaft is easy to produce radial deformation due to its own stiffness, but the machining accuracy of shaft is often very high, because the traditional electrolytic machining method is difficult to achieve its precision requirements. Therefore, the conventional electrolytic grinding method can not be used to process it. For the problem of easy deformation of slender axis with variable cross section, there has been a new process method of electrolysis grinding, which is the following middle pole method. On the basis of this, a new process method, "variable load following middle pole method", has been designed for electrolytic grinding. And the machining analysis of typical parts with long axis with variable cross-section is carried out. In this paper, the theory, mechanical model, simulation and experimental verification will be analyzed and studied. Firstly, the development and application of ECM at home and abroad are briefly summarized, the basic principle and characteristics of ECM are expounded, and the factors affecting machining accuracy are analyzed systematically. In view of the above two machining technology methods are described theoretically, and then the mechanical model of electrolytic grinding is established and the mechanical analysis is carried out for the main research object of this paper. Secondly, with the help of ANSYSWorkbench simulation software, the deformation law and stress change of the parts are analyzed by using two processing methods of common middle pole following and variable load following middle pole, and the results of the two kinds of simulation are compared. The results show that the minimum radial displacement and the maximum stress are reduced from the maximum 27.9um to 9.8 ump and the maximum stress from 25.4MPa to 22.4 MPA, respectively, compared with the electrolysis grinding with the following middle pole method, and the minimum radial displacement of the parts machined by the variable load follower electrode method is reduced from the maximum 27.9um to 9.8 ump. The machining accuracy is greatly improved. Then the force applied by variable load is analyzed and selected by using instantaneous dynamic model. When the radial force difference between variable load and grinding force of parts is 4 N, the machining accuracy of electrolysis grinding with variable load is the highest when the radial force difference between variable load and grinding force is 4 N. Finally, considering that the main mechanical factors that affect the radial deformation of parts in variable load follower electrolysis grinding are parts rotational speed Vw, longitudinal feed speed Vf and grinding depth ap,. In this paper, the parameters of these factors are optimized and analyzed by orthogonal experiment. Finally, the rotational speed of parts is 240r / min and the longitudinal feed speed is 0.140 mm/r,. The variable load machining process with grinding depth of 0.025 mm can achieve high machining accuracy. The results are verified by experiments, and the scheme is feasible.
【学位授予单位】:西华大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG580;TG662
【相似文献】
中国期刊全文数据库 前10条
1 黄伟馨,秦焕兴;外圆电解磨削[J];机械加工;1966年07期
2 乔木,张明德;电解磨削加工修复零件调查[J];粮油加工与食品机械;1974年S3期
3 段明扬,,杨铃;电解磨削镜面新工艺的研究[J];广西机械;1994年01期
4 尹洋;螺旋电极电解磨削加工的研究[J];四川工业学院学报;2001年04期
5 干为民;徐家文;;展成电解磨削加工的机理研究[J];机械科学与技术;2006年06期
6 周利平;;螺旋电极电解磨削效率的模糊综合评判[J];西南民族大学学报(自然科学版);2007年05期
7 刘向蕾;朱荻;曾永彬;刘勇;黄绍服;;电解磨削复合加工精密扩孔研究[J];电加工与模具;2009年02期
8 水原康;赵恩光;;硬质合金刀具的电解磨削[J];工具技术;1965年08期
9 ;电解磨削加工技术[J];电子管技术;1967年01期
10 ;电解磨削机床[J];电加工;1973年03期
中国重要会议论文全文数据库 前8条
1 干为民;徐家文;;数控展成电解磨削加工的机理研究[A];2005年中国机械工程学会年会第11届全国特种加工学术会议专辑[C];2005年
2 干为民;徐家文;;数控展成电解磨削加工的机理研究[A];2005年中国机械工程学会年会论文集第11届全国特种加工学术会议专辑[C];2005年
3 干为民;徐家文;;数控展成电解磨削加工的机理研究[A];2005年中国机械工程学会年会论文集[C];2005年
4 徐波;干为民;;数控电解磨削加工硬质合金的试验研究[A];第13届全国特种加工学术会议论文集[C];2009年
5 干为民;褚辉生;徐宏力;;五轴联动数控电解磨削整体叶轮的算法[A];全国先进制造技术高层论坛暨第七届制造业自动化与信息化技术研讨会论文集[C];2008年
6 干为民;刘延禄;徐家文;;整体叶轮叶片型面数控展成电解磨削机床及运动分析[A];2001年中国机械工程学会年会暨第九届全国特种加工学术年会论文集[C];2001年
7 郑开陆;;瓦楞辊再生新工艺的研究[A];第十一届全国包装工程学术会议论文集(一)[C];2007年
8 沈峥嵘;徐正扬;朱荻;;镍基高温合金K424电解磨削复合打孔技术研究[A];第14届全国特种加工学术会议论文集[C];2011年
中国硕士学位论文全文数据库 前9条
1 尹其林;数控电解磨削加工的基础研究[D];南京农业大学;2009年
2 单晓慧;钛合金电解磨削加工工艺研究[D];大连理工大学;2015年
3 李发智;基于ANSYSWorkbench的变截面细长轴电解磨削分析与研究[D];西华大学;2015年
4 辜斌;低刚度、变截面轴电解磨削加工仿真技术[D];西华大学;2008年
5 张欣耀;精密微小孔电解磨削复合扩孔加工技术研究[D];南京航空航天大学;2009年
6 孙元普;电解磨削加工钛合金基础试验研究[D];大连理工大学;2014年
7 肖雄;摩擦副表面电解磨削集成控制技术及其相关工艺研究[D];南京航空航天大学;2014年
8 刘祥伟;聚合釜电解磨削复合加工工艺参数选择[D];哈尔滨工程大学;2006年
9 沈峥嵘;镍基铸造高温合金K424电解磨削复合加工试验研究[D];南京航空航天大学;2012年
本文编号:2373357
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2373357.html