当前位置:主页 > 科技论文 > 金属论文 >

镁合金有机复合散热涂层的制备及性能研究

发布时间:2019-01-01 08:24
【摘要】:镁合金是当前最轻的商用金属结构材料,其导热性能仅次于铜和铝,在同时要求轻量化和导热性能的领域具有很好的应用前景,如大型户外灯罩、通讯基站散热部件等。但镁合金耐腐蚀性能差,在工程应用中往往需要采用表面防腐涂层来保证其防腐能力,目前工程上使用最多的是有机涂层,导热性差,不可避免地导致镁合金构件综合散热性能下降,成为镁合金在这些领域推广应用的技术瓶颈之一。针对上述问题,本文通过向有机硅树脂涂层中填充高导热填料,研究填料含量和种类对涂层散热性、耐腐蚀能力及机械性能的影响,旨在为开发散热-防腐性能兼顾的镁合金有机涂层提供理论支撑。本研究以AZ31B镁合金为基板材料,以水性有机硅树脂为涂层基体材料,以纳米铜粉、纳米碳粉、纳米碳化硅为导热填料粒子,制备了17种不同的有机复合涂层,并对有机复合涂层的散热性、机械性能和耐腐蚀性进行测试表征,并进行综合技术性能评估。主要研究结果如下:①当填料较少时并不能提高有机硅树脂涂层的散热性,只有超过一定含量才有明显的效果,对于同一种填料,随着其含量的增加,涂层散热效果越来越好,但是涂层散热性与填料含量并没有表现出线性关系。当填料含量相同时,纳米铜粉对有机硅树脂涂层散热性的影响最为明显,其效果优于纳米碳粉和纳米碳化硅。当填料粒子含量相同时,混杂填料对有机硅树脂涂层散热性的影响优于单一填料。②填料能够提高有机硅树脂涂层的硬度和耐冲击性,随着填料含量增加有机硅树脂涂层硬度越来越高,但是涂层的耐冲击性随填料粒子含量先上升后下降,填料含量相同时,添加铜粉的有机硅树脂涂层的硬度最高,耐冲击性最好,添加碳化硅的有机硅树脂涂层的硬度最低,耐冲击性最差。对于附着力,填料种类和含量对有机硅树脂涂层几乎没有明显的影响,即填料并没有恶化涂层的附着力③纳米碳化硅和纳米碳粉提高了有机硅树脂涂层的耐腐蚀性,纳米铜粉降低了有机硅树脂涂层的耐腐蚀性。此外,可以发现当添加同种导热填料粒子时,有机复合涂层的耐盐雾腐蚀性随着填料含量的增加而降低。当进行30小时盐雾腐蚀时,涂层表面腐蚀都很严重,其中添加纳米碳粉和碳化硅的有机复合涂层表面的鼓泡现象都很严重,腐蚀面积很大,添加纳米铜粉粒子的有机复合涂层表面生产很厚一层疏松的腐蚀物,其腐蚀程度最严重。④对于同一种填料,当填料粒子含量0-60份时,涂层的综合技术性能越来越好。当填料含量相同时,纳米铜粉对有机硅树脂涂层综合技术性能的提升最为明显,其效果优于纳米碳粉和纳米碳化硅。当填料粒子含量相同时,添加三种混杂的有机复合涂层综合技术性能最好。
[Abstract]:Magnesium alloy is the lightest commercial metal structure material at present, and its thermal conductivity is second only to copper and aluminum. Magnesium alloy has a good application prospect in the field of both lightweight and thermal conductivity, such as large outdoor lampshade, communication base station heat dissipation parts and so on. However, the corrosion resistance of magnesium alloy is poor, so it is necessary to use surface anticorrosive coating to ensure its anticorrosion ability in engineering application. At present, organic coating is the most used in engineering, and its thermal conductivity is poor. It inevitably leads to the deterioration of the comprehensive heat dissipation of magnesium alloy components and becomes one of the technical bottlenecks in the popularization and application of magnesium alloys in these fields. In order to solve the above problems, the effect of filler content and type on the heat dissipation, corrosion resistance and mechanical properties of the coating was studied by filling the coating with high thermal conductivity. The purpose of this paper is to provide theoretical support for the development of organic coatings of magnesium alloys with heat dissipation and anticorrosive properties. In this paper, 17 kinds of organic composite coatings were prepared by using AZ31B magnesium alloy as substrate material, waterborne silicone resin as coating material, nano-copper powder and nano-silicon carbide as thermal conductive filler particles. The heat dissipation, mechanical properties and corrosion resistance of the organic composite coatings were tested and characterized, and the comprehensive technical properties were evaluated. The main results are as follows: 1 when the filler is less, the heat dissipation of the organic silicone resin coating can not be improved, only when the content of the coating exceeds a certain content has obvious effect. For the same kind of filler, with the increase of its content, the heat dissipation effect of the coating becomes better and better. However, there is no linear relationship between coating heat dissipation and filler content. When the filler content is the same, the effect of nano-copper powder on the heat dissipation of organic silicone resin coating is the most obvious, and the effect is better than that of nano-carbon powder and nano-silicon carbide. When the content of filler particles is the same, the influence of hybrid filler on heat dissipation of organic silicone resin coating is better than that of single filler. 2 packing can improve the hardness and impact resistance of organic silicone resin coating. With the increase of filler content, the hardness of organic silicone resin coating is higher and higher, but the impact resistance of the coating increases first and then decreases with the content of filler particles. When the filler content is the same, the hardness of organic silicone resin coating added with copper powder is the highest. The impact resistance is the best and the hardness is the lowest and the impact resistance is the worst. For adhesion, the type and content of fillers had little effect on the coating of silicone resin, that is, the adhesion of the coating was not aggravated by the filler. 3 nanometer silicon carbide and nano carbon powder improved the corrosion resistance of the coating. Nano copper powder reduces the corrosion resistance of silicone coating. In addition, it can be found that the corrosion resistance of organic composite coatings decreases with the increase of filler content when the same thermal conductive filler particles are added. After 30 hours of salt spray corrosion, the corrosion on the coating surface is very serious, and the blistering phenomenon on the surface of organic composite coating with nano-carbon powder and silicon carbide is very serious, and the corrosion area is very large. The surface of organic composite coating with nano-copper powder particles produces a thick layer of loose corrosion, and its corrosion degree is the most serious. 4 for the same filler, when the filler particle content is 0-60 phr, the comprehensive technical properties of the coating become better and better. When the filler content is the same, the comprehensive technical properties of organic silicone resin coating are improved most obviously by nano-copper powder, and the effect is better than that of nano-carbon powder and nano-silicon carbide. When the content of filler particles is the same, adding three kinds of hybrid organic composite coatings has the best comprehensive technical properties.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG174.4

【相似文献】

相关期刊论文 前10条

1 杨文彬;张立同;成来飞;华云峰;张钧;;金属有机物化学气相沉积法制备铱涂层的形貌与结构分析[J];稀有金属材料与工程;2006年03期

2 勾昱君;刘中良;;优化抑霜涂层的实验研究[J];陶瓷研究与职业教育;2006年01期

3 朱佳;冀晓鹃;揭晓武;史明;;封严涂层材料及应用[J];材料开发与应用;2008年04期

4 斯蒂芬·H·加里法里尼;罗恩·巴纳斯;J·克里唐;龙克昌;;航天飞机用的高粘性涂层的研制[J];稀有金属合金加工;1981年04期

5 缪兴邦;水溶性织物涂层胶的合成[J];化学世界;1985年03期

6 陈斌,易茂中;封严涂层的抗冲蚀性与冲蚀速度的关系[J];中南工业大学学报;1998年04期

7 郑有新;浅谈涂层表面颗粒不良现象[J];材料保护;2001年04期

8 闫颖,石子源,刘国伟;锌铬膜涂层的制备研究[J];大连铁道学院学报;2002年04期

9 张琼,蔡传荣;钛阳极涂层溶蚀失效的研究[J];电子显微学报;2003年06期

10 刘夙伟;李曙;刘阳;;封严涂层材料及其可刮削性的评价[J];中国表面工程;2009年01期

相关会议论文 前10条

1 张琼;蔡传荣;;钛阳极涂层溶蚀失效的研究[A];第三届全国扫描电子显微学会议论文集[C];2003年

2 王颖;顾卡丽;李健;;智能变色涂层及其应用[A];第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集[C];2006年

3 单凯军;余文莉;徐四清;;家电环保涂层表面性能检测的研究[A];2007中国钢铁年会论文集[C];2007年

4 李金桂;;无机富锌涂层的诞生和应用[A];第二届全国重防腐蚀与高新涂料及涂装技术研讨会论文集[C];2004年

5 王允夫;陈小英;王红玲;;高温合金抗热震涂层研究[A];中国硅酸盐学会搪瓷分会2003年学术研讨会论文集[C];2003年

6 刘建华;李兰娟;李松梅;;铝合金早期腐蚀预警光基敏感涂层的研制[A];2004年材料科学与工程新进展[C];2004年

7 林达仁;;梅雨期涂层表面泛白现象及其防治[A];中国电子学会生产技术学会第三届化工学术年会论文汇编(下)[C];1991年

8 庞佑霞;刘厚才;郭源君;;有机复合弹性涂层材料的抗磨蚀实验研究[A];第七届全国摩擦学大会论文集(二)[C];2002年

9 付前刚;李贺军;黄剑锋;史小红;史波;李克智;;炭/炭复合材料磷酸盐涂层的抗氧化性能研究[A];第19届炭—石墨材料学术会论文集[C];2004年

10 王兴原;苗晓;胡志强;光红兵;顾祥宇;;改善无取向硅钢环保涂层表面特性的方法研究[A];高性能电工钢推广应用交流暨第五次全委工作(扩大)会专题报告及论文[C];2013年

相关重要报纸文章 前6条

1 赵志玲;带卷粉末涂层新技术[N];世界金属导报;2012年

2 赵艳涛 曹垒 陈刚 孙亚娜;沙钢无取向硅钢涂层调试改进工艺[N];世界金属导报;2014年

3 华凌;美开发出智能过滤涂层[N];科技日报;2012年

4 莫文铸;防止衣服变脏科学家研制超疏液材料[N];中国纺织报;2013年

5 ;建筑幕墙用铝塑复合板[N];中国建材报;2008年

6 王烁 王奇 陈运法;玻璃幕墙专用纳米自清洁涂层的研究[N];中国建材报;2006年

相关博士学位论文 前10条

1 蒲泽林;电热爆炸喷涂法制备亚微米晶涂层的研究[D];华北电力大学(北京);2005年

2 檀琳;非共价键合聚合物抗污涂层的制备及应用研究[D];中国科学技术大学;2015年

3 黄群武;耐候性太阳选择性吸收涂层的研究[D];天津大学;2007年

4 刘红兵;等离子复合渗技术制备氧化物阻氚涂层及其性能研究[D];南京航空航天大学;2010年

5 陈春燕;新型固相微萃取涂层的制备及其在环境分析中的应用[D];湖南大学;2013年

6 吴王平;<110>织构铱涂层结构与性能研究[D];南京航空航天大学;2013年

7 石永敬;镁合金表面磁控溅射沉积Cr基涂层的结构与特性研究[D];重庆大学;2009年

8 刘爱华;PVD氮化物涂层的高温摩擦磨损特性及机理研究[D];山东大学;2012年

9 江凡;铜合金基体上电沉积钨涂层及其性能研究[D];北京科技大学;2015年

10 马克娜;纯钛种植体表面壳聚糖/明胶功能性涂层的构建及性能研究[D];武汉大学;2014年

相关硕士学位论文 前10条

1 陈喜娟;两种耐磨涂层的组织结构表征及性能研究[D];西安石油大学;2015年

2 段晋辉;WS_2-TiB_2固体润滑涂层的制备及性能研究[D];昆明理工大学;2015年

3 王昊;连续高频感应真空熔覆技术研究[D];青岛理工大学;2015年

4 赵亚穷;聚碳酸酯透明件/纳米TiO_2涂层的耐紫外老化及环境应力开裂行为研究[D];郑州大学;2015年

5 王有维;铝电解槽TiB_2阴极涂层的制备及其性能研究[D];昆明理工大学;2015年

6 辛欣;Ti(Cr)SiC(O)N涂层表面改性硬质合金及热处理对其机械性能的影响[D];西南交通大学;2015年

7 刘玉洁;铜介导的多酚涂层用于心血管材料表面改性的研究[D];西南交通大学;2015年

8 姚竟迪;土壤模拟液中三种涂层的腐蚀电化学行为研究[D];大连海事大学;2015年

9 牛永辉;结晶器CuCrZr铜板表面超音速等离子喷涂Cr_2O_3-TiO_2涂层的组织与性能[D];西安建筑科技大学;2015年

10 薛绘;聚酰亚胺涂层胶的制备与性能[D];南京理工大学;2015年



本文编号:2397273

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2397273.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e8272***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com