当前位置:主页 > 科技论文 > 金属论文 >

基于Marc的ECAP-FE累积塑性变形工艺数值模拟研究

发布时间:2019-01-25 19:08
【摘要】:镁合金被誉为21世纪可持续发展的“绿色材料”,也是目前最轻的金属结构材料,具有很高的比强度,主要应用于医学、3C电子产品、汽车、航空航天等各个领域,已然成为世界各国关注和研究的焦点。由于镁合金具有密排六方结构的特点,在室温变形条件下独立的滑移系较少,因此室温下塑性差,变形加工困难,需要采用大塑性变形复合工艺才能有效的细化镁合金晶粒,以提高镁合金的塑性,从而改善其加工性能。以促进变形镁合金产品在各个领域的广泛应用。由于传统的镁合金挤压棒材的变形能力和强韧性差,采用等通道转角挤压大塑性变形技术(ECAP),即由两个相交的等径通道组成的模具并通过纯剪切方式实现块体金属材料大塑性变形的成形工艺,它能够有效的制备超细晶结构材料,但是,需要多道次等通道转角挤压成形才能获得组织均匀的高性能材料,并且在多道次挤压过程中还容易出现开裂现象,因此,这种大塑性变形工艺难以进行工业化推广。本文基于等通道转角挤压工艺的缺陷,提出并设计了等通道转角挤压与正挤压相复合的累积变形工艺(以下简称ECAP-FE),即在等通道转角挤压型腔后直接连接一个具有一定挤压比的正挤压芯模,由此形成一个集多种变形工艺于一体的连续挤压型腔,从而实现对材料的累积塑性变形。由此找到一种提高镁合金塑性的新途径。本文首先采用二次开发技术在MSC.Marc软件中建立了AZ31镁合金的材料模型,然后构建了AZ31镁合金微观组织预测系统的程序开发流程图,并利用FORTRAN语言对微观组织模型进行编程,成功的预测了挤压过程中AZ31镁合金的晶粒尺寸和动态再结晶体积分数的变化过程。将构建成功的AZ31镁合金的ECAP-FE挤压过程有限元分析模型进行数值模拟。最后对AZ31镁合金在ECAP-FE挤压模拟过程中的挤压力、等效应力场、等效应变场、等效应变速率进行有限元分析。模拟结果表明:与单一的ECAP挤压工艺相比,ECAP-FE复合挤压变形工艺能有效的提高材料的变形量,使材料产生累积变形,细化晶粒;并且,ECAP-FE复合挤压变形工艺所获得的平均等效应变提高了约2倍,等效不均匀系数有很大幅度的下降,且等效应变呈轴对称分布,因此ECAP-FE能实现较高的累积塑性变形;而且,在ECAP-FE复合挤压工艺中,正挤压的模面能够为ECAP挤压过程提供有效背压,减小剪切带面积,使之更接近理想的简单切变;使得经ECAP-FE挤压后的最大等效应变速率为0.9916,最大等效应变速率显著提高。由此表明ECAP-FE复合累积塑性变形工艺可获取更加细小、均匀的晶粒组织。此结果为ECAP-FE复合挤压工艺的进一步深入研究提供了理论依据。
[Abstract]:Magnesium alloys are praised as "green materials" for sustainable development in the 21st century. They are also the lightest metal structural materials at present. They have high specific strength and are mainly used in medicine, 3C electronic products, automobiles, aerospace and other fields. Has become the focus of attention and research around the world. Because magnesium alloy has the characteristic of dense hexagonal structure and there are few independent slip systems under room temperature deformation, it is difficult to deform and deform at room temperature, so it is necessary to use large plastic deformation composite process to refine magnesium alloy grain effectively. In order to improve the plasticity of magnesium alloys and improve their processing properties. In order to promote the wide application of wrought magnesium alloy products in various fields. Due to the poor deformation ability and strength and toughness of the traditional magnesium alloy extruded bar, (ECAP), is used to extrude large plastic deformation technology at equal channel angle. That is, the mould composed of two intersecting equal channels and the forming process of large plastic deformation of bulk metal material by pure shear, it can effectively prepare ultrafine crystal structure material, but, High performance materials with uniform microstructure can be obtained by multi-pass secondary channel angular extrusion forming, and cracking is easy to occur in multi-pass extrusion process. Therefore, this kind of large plastic deformation process is difficult to be popularized in industry. Based on the defects of the equal channel angular extrusion process, the cumulative deformation process of equal channel angular extrusion and forward extrusion (hereinafter referred to as ECAP-FE) is proposed and designed in this paper. That is, a positive extrusion core die with a certain extrusion ratio is connected directly behind the equal channel angular extrusion cavity, and a continuous extrusion cavity with multiple deformation processes is formed, thus the cumulative plastic deformation of the material is realized. Therefore, a new way to improve the plasticity of magnesium alloy is found. In this paper, the material model of AZ31 magnesium alloy is established by using secondary development technology in MSC.Marc software, then the program development flow chart of AZ31 magnesium alloy microstructure prediction system is constructed, and the microstructure model of AZ31 magnesium alloy is programmed by FORTRAN language. The change of grain size and dynamic recrystallization integral number of AZ31 magnesium alloy during extrusion was successfully predicted. The finite element analysis model of ECAP-FE extrusion process of AZ31 magnesium alloy was numerically simulated. Finally, the extrusion force field, equivalent strain rate and equivalent strain field of AZ31 magnesium alloy during ECAP-FE extrusion simulation are analyzed by finite element method. The simulation results show that compared with the single ECAP extrusion process, the ECAP-FE composite extrusion process can effectively increase the amount of deformation of the material, make the material produce cumulative deformation and refine the grain. Moreover, the average equivalent strain obtained by ECAP-FE composite extrusion process has increased by about 2 times, and the equivalent inhomogeneity coefficient has been greatly reduced, and the equivalent strain has been distributed symmetrically, so ECAP-FE can achieve higher cumulative plastic deformation. Moreover, in the process of ECAP-FE composite extrusion, the die face of forward extrusion can provide effective back pressure for ECAP extrusion process, reduce the area of shear band, and make it closer to the ideal simple shear. The maximum equivalent strain rate after ECAP-FE extrusion is 0.9916, and the maximum equivalent strain rate increases significantly. It is shown that ECAP-FE composite cumulative plastic deformation process can obtain more fine and uniform grain structure. The results provide a theoretical basis for the further study of ECAP-FE composite extrusion process.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG379

【参考文献】

相关期刊论文 前10条

1 任朋立;;镁合金开发应用现状及其发展策略[J];新材料产业;2014年04期

2 吴远志;严红革;陈吉华;朱素琴;薄红伟;王林伟;;AZ31镁合金高应变速率多向锻造组织演变及力学性能[J];中国有色金属学报;2012年11期

3 陈贵清;傅高升;程超增;颜文煅;邹则昌;林绍义;;应变速率对3003铝合金热变形动态再结晶组织的影响[J];材料热处理学报;2012年10期

4 李峰;林俊峰;张鑫龙;潘强荣;;连续变截面直接挤压成形技术研究[J];材料科学与工艺;2012年05期

5 任国成;赵国群;徐淑波;王桂青;;AZ31镁合金等通道转角挤压变形均匀性有限元分析[J];中国有色金属学报;2011年04期

6 何运斌;潘清林;覃银江;刘晓艳;李文斌;Yu-lung CHIU;John J J CHEN;;等通道角挤压制备细晶ZK60镁合金的组织与力学性能[J];中国有色金属学报;2010年12期

7 王伟之;程先华;;A Finite Element Simulation of NiTi Alloy during Equal Channel Angular Extrusion[J];Journal of Wuhan University of Technology(Materials Science Edition);2010年05期

8 刘晓峰;张敏刚;孙述利;孙钢;柴跃生;;数值模拟内圆角半径对AZ31镁合金等径角挤压过程的影响[J];特种铸造及有色合金;2010年06期

9 张丁非;胡红军;潘复生;杨明波;张钧萍;;Numerical and physical simulation of new SPD method combining extrusion and equal channel angular pressing for AZ31 magnesium alloy[J];Transactions of Nonferrous Metals Society of China;2010年03期

10 王丽娟;;热锻成形过程微观组织模拟的研究概况[J];机电设备;2010年02期

相关博士学位论文 前1条

1 康锋;背压对镁合金等径角变形的作用[D];南京理工大学;2010年

相关硕士学位论文 前3条

1 张文慈;钛合金棒线材连轧孔型系统研究[D];太原科技大学;2011年

2 叶永南;AZ31镁合金往复挤压成形热力耦合模拟研究[D];西安理工大学;2007年

3 陈戟铭;薄壁管数控弯曲成形壁厚变薄的数值分析[D];西北工业大学;2003年



本文编号:2415092

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2415092.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户48d9d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com