金属磁记忆—磁巴克豪森噪声融合检测应力系统的研究及应用
[Abstract]:Because of welding, casting and long-term service of ferromagnetic components, there will be internal stresses. These internal stresses have a great influence on the physical properties of ferromagnetic components. For example, welding stress in welding process; impact stress in explosion impact process; thermal stress caused by thermal expansion and cold contraction. Typical engineering problems such as longitudinal temperature stress of CWR, stress of welded steel plate structure and so on. Therefore, it is necessary to detect the internal stress of ferromagnetic components. Based on the detection principle of metal magnetic memory (MMM) method and magnetic Barkhausen noise (MBN) method, this paper combines the advantages of the two detection methods to perform on-line, nondestructive, fast stress detection and stability analysis for ferromagnetic materials. The main research contents are as follows: 1. Using the average volume (AVMBJ), of the magnetic Barkhausen jump released by the irreversible displacement of the magnetic domain wall and the relationship between the irreversible susceptibility and the stress of the ferromagnetic member under the action of the alternating magnetic field. The mathematical relationship between the mean volume of magnetic Barkhausen jump and the stress and excitation magnetic field is deduced. The displacement process of single crystal domain wall under the action of stress and magnetic field is analyzed, and the effect of excitation magnetic field and stress on the average volume of magnetic Barkhausen jump is explained. According to the different saturation velocity of magnetic Barkhausen jump curve of ferromagnet under tension and compression stress, the critical magnetic field concept of magnetic domain wall displacement is introduced. The problem of supersaturated calibration of magnetic Barkhausen jump signal with the change of stress is solved. 2. According to the principle of metal magnetic memory and magnetic Barkhausen noise, a special sensor for ferromagnetic component stress detection is designed and fabricated. And the primary signal processing circuit: excitation circuit, amplifier circuit and secondary signal processing circuit: data acquisition circuit. The high performance processor is used to realize rich man-machine interface. Automatic control technology is used to switch metal magnetic memory and magnetic Barkhausen noise working system to realize automatic detection. 3. The principle and realization method of metal magnetic memory and magnetic Barkhausen noise detection are studied, and the advantages of the two methods are combined. In order to meet the requirements of large area, long time consuming and real time of stress detection in some special ferromagnetic components, a fast stress detection method based on magnetic memory, magnetic Barkhausen noise fusion, is proposed. The following studies have been completed: (1) the welding stress distribution of E36 and CCSB grade marine steel plates is analyzed; The welding stress of E36 steel plate experimental cabin before and after blasting impact was analyzed. The welding stress of CCSB steel plate impact test bench is analyzed. (2) the variation law of temperature stress of seamless track is studied, according to the principle of virtual work of static balance, the strength and stability condition of the line, The dam model and energy calculation formula for the stability of CWR are established. Using this formula to calculate the current storage energy of CWR, the stability of the track is explained from the point of view of energy. (3) based on the discrete short time Fourier transform (DSTFT) method, a new method for detecting and evaluating the global and local stability of CWR is proposed. The mathematical formula of stability evaluation is established. (4) based on the on-line measurement of the temperature stress of the seamless track and the field rail temperature, the numerical calculation relationship of the actual lock-in rail temperature of the seamless track is established, and the on-line implementation method of the actual lock-in rail temperature detection is determined.
【学位授予单位】:北京化工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG404;TG115
【相似文献】
相关期刊论文 前10条
1 董丽虹;徐滨士;董世运;王丹;;金属磁记忆技术用于再制造毛坯寿命评估初探[J];中国表面工程;2010年02期
2 王海涛;刘平;田贵云;王平;姚恩涛;杨雅荣;周德强;;金属磁记忆累积机理[J];无损检测;2010年09期
3 董丽虹;徐滨士;董世运;王慧鹏;;金属磁记忆信号表征铁磁材料变形的基础研究[J];装甲兵工程学院学报;2010年03期
4 姚凯;王正道;邓博;丁克勤;;金属磁记忆技术的数值研究[J];工程力学;2011年09期
5 王丹;董世运;徐滨士;陈群志;董丽虹;;静载拉伸45钢材料的金属磁记忆信号分析[J];材料工程;2008年08期
6 邸新杰;李午申;;拉伸载荷下金属磁记忆信号盒维数的变化规律研究[J];材料工程;2009年05期
7 吴大波;徐敏强;路胜卓;;焊板的金属磁记忆信号研究[J];煤炭技术;2011年01期
8 栾明;樊建春;张来斌;马娟;郑文培;;一种新的多探头金属磁记忆检测仪信号处理方法[J];无损检测;2011年01期
9 张广伟;张来斌;樊建春;孙秉才;齐立娟;赵坤鹏;张仁庆;;金属磁记忆传感器封装技术[J];无损检测;2013年01期
10 张西勇;张永祥;明廷涛;;小波包变换在金属磁记忆信号处理中的应用研究[J];噪声与振动控制;2010年03期
相关会议论文 前10条
1 姚凯;丁克勤;王正道;;金属磁记忆法研究进展[A];第十二届全国实验力学学术会议论文摘要集[C];2009年
2 A.A.杜波夫;张友人;;用金属磁记忆法诊断设备和结构的强度[A];设备监测与诊断技术及其应用——第十二届全国设备监测与诊断学术会议论文集[C];2005年
3 王正道;姚凯;沈恺;黄亭;;金属磁记忆检测技术研究进展及若干讨论[A];第十三届全国实验力学学术会议论文摘要集[C];2012年
4 邓博;王正道;姚凯;丁克勤;;局部塑性变形下的金属磁记忆实验研究[A];北京力学会第17届学术年会论文集[C];2011年
5 严春妍;李午申;;金属磁记忆(MMM)检测方法[A];第十一次全国焊接会议论文集(第1册)[C];2005年
6 刘桂良;陈群志;徐滨士;董世运;董丽虹;;金属磁记忆无损检测技术的现状与进展[A];第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集[C];2006年
7 刘桂良;陈群志;徐滨士;董世运;董丽虹;;金属磁记忆无损检测技术的现状与进展[A];第六届全国表面工程学术会议论文集[C];2006年
8 邓博;姚凯;丁克勤;王正道;;金属磁记忆技术的数值研究[A];北京力学会第十六届学术年会论文集[C];2010年
9 姚凯;王正道;沈恺;黄亭;;基于弱磁检测的损伤判据及参数识别[A];北京力学会第18届学术年会论文集[C];2012年
10 姚凯;王正道;沈铠;黄亭;;基于弱磁检测的损伤判据及参数识别[A];力学与工程应用[C];2012年
相关博士学位论文 前2条
1 舒迪;金属磁记忆—磁巴克豪森噪声融合检测应力系统的研究及应用[D];北京化工大学;2015年
2 刘斌;基于第一性原理金属磁记忆力磁耦合模型的研究[D];沈阳工业大学;2013年
相关硕士学位论文 前10条
1 黄隐;铁磁试件基于金属磁记忆的力—磁效应研究[D];南昌航空大学;2016年
2 刘磊;金属磁记忆技术在无缝钢轨应力测试中的应用研究[D];北京化工大学;2010年
3 孙艳婷;金属管道裂纹的金属磁记忆定量化评价方法研究[D];北京化工大学;2010年
4 周笛;金属磁记忆检测仪研究[D];大连理工大学;2012年
5 鲁欣萌;金属磁记忆检测系统的研究与设计[D];哈尔滨理工大学;2015年
6 王文科;基于金属磁记忆技术的应力集中检测研究与应用[D];兰州理工大学;2013年
7 罗声彩;金属磁记忆二维定量检测试验研究[D];南昌航空大学;2011年
8 罗龙清;金属磁记忆定量评估疲劳损伤程度研究[D];南昌航空大学;2011年
9 蹇兴亮;一种新型金属磁记忆检测仪的研制[D];南京航空航天大学;2007年
10 李新蕾;金属磁记忆检测机理的试验研究与有限元仿真[D];南昌航空大学;2010年
,本文编号:2419923
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2419923.html