等离子喷焊表面质量的金属磁记忆检测
[Abstract]:Plasma spray welding is a typical surface repair technology, which has been widely used because of its advantages of concentrated energy, high efficiency, good process stability and easy to realize automation. In the process of spray welding, the center temperature of plasma arc can reach more than 15000 K, which makes the substrate produce great thermal damage, and during the service of the cladding layer, it often bears the function of tensile fatigue load, and the stress is concentrated. Fatigue has become one of the main forms of cladding damage. Nondestructive detection of these damage has become a key link in surface repair of remanufactured components. Metal magnetic memory detection is a new nondestructive testing method. It is of great significance and application value to study the thermal damage, cladding stress and fatigue of the substrate, to promote the development of the technology in surface engineering. In this paper, the effect of thermal stress on surface magnetic memory signal in plasma spray welding is studied. The plasma spray welding cladding layer was prepared to detect the magnetic memory signal on the detection line at different distances from the cladding layer before and after spray welding. The variation of the magnetic signal peak and valley difference (Hp (p) with the thermal stress was analyzed. Combined with the change of microstructure and the half-width of X-ray diffraction peak in the heat-affected zone, the magnetic memory measurement method of thermal stress in plasma spray welding is discussed. Secondly, the standard plasma spray welding coating static load tensile specimen was prepared, and the surface magnetic signal of the cladding layer under different tensile stress was detected by TSC-2M-4 magnetic memory detector. The quantization relationship between magnetic signal normal component gradient K and tangential component mean Hp (x) avg and tensile stress is analyzed, and further based on magnetic domain change and magneto-mechanical effect, The magnetic memory technique for quantitative evaluation of static load tensile stress of plasma spray welding cladding is discussed. Finally, the magnetic memory signals, plastic deformation and microstructure of the cladding layer were observed at different cycles and before and after fracture for the standard plasma spray welding cladding fatigue specimen. The relationship between the maximum gradient Kmax of Hp (y) and the peak Hp (x) avg of Hp (x) with the increase of cycle cycles is analyzed. The damage parameter Dof the cladding layer based on Kmax is proposed and the magnetic memory method for detecting the tensile fatigue damage of the cladding layer by plasma spray welding is discussed.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG441.7
【相似文献】
相关期刊论文 前10条
1 詹祖保;吴子健;阮文军;苏芳;;等离子喷焊及应用[J];材料保护;1991年04期
2 ;液压传动双枪等离子喷焊及其应用[J];矿山机械;1974年04期
3 武汉材料保护研究所犁铧课题组;犁铧等离子喷焊工艺与材料的研究[J];材料保护;1978年03期
4 金雪晶;;粉末等离子喷焊热轧工具的试验[J];鞍钢技术;1980年10期
5 黄胜辉;;小型等离子喷焊枪[J];新技术新工艺;1984年03期
6 佟树善;丁彰雄;;等离子喷焊工艺对焊层冲淡率的影响[J];武汉水运工程学院学报;1985年02期
7 高安林;;等离子喷焊层冲击韧性试验[J];机械工程师;1985年03期
8 高安林;等离子喷焊层冲击韧性试验[J];化工时刊;1990年03期
9 范志虎;林湛;;微机控制等离子喷焊设备的研制[J];电焊机;1991年04期
10 杨永良;等离子喷焊技术的几点体会[J];焊接;1995年04期
相关会议论文 前4条
1 尹瑜玲;詹祖保;吴子健;;大型柴油机阀杆与阀座的等离子喷焊工艺[A];第九次全国焊接会议论文集(第1册)[C];1999年
2 李京龙;白钢;李振民;;脉动等离子喷焊技术[A];第十次全国焊接会议论文集(第2册)[C];2001年
3 卢顺;陈健;詹捷;曹宇芳;孙智富;;模具表面等离子喷焊CoWC50合金强化研究[A];2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C];2007年
4 童向阳;;DF4内燃机车柴油机气门等离子喷焊[A];第十一次全国焊接会议论文集(第1册)[C];2005年
相关博士学位论文 前1条
1 王怀志;铝青铜减摩粉体涂层及摩擦磨损性能[D];兰州理工大学;2010年
相关硕士学位论文 前10条
1 徐红勇;等离子喷焊硬质增强耐磨层组织与性能研究[D];吉林大学;2016年
2 张野;Mo和Cu对Ni60A等离子喷焊层组织及性能的影响[D];吉林大学;2016年
3 杨成;等离子喷焊表面质量的金属磁记忆检测[D];合肥工业大学;2016年
4 杜永鹏;自动等离子喷焊控制系统研究[D];兰州理工大学;2008年
5 黄诗铭;模具表面缺陷等离子喷焊修复研究[D];吉林大学;2012年
6 马保荣;铜合金粉末粒度对等离子喷焊层组织和性能的影响[D];兰州理工大学;2010年
7 蒋涛;气门锥面等离子喷焊钴基系列合金强化层的性能研究[D];广东工业大学;2006年
8 王书光;数字式等离子喷焊电源的研究与设计[D];山东科技大学;2007年
9 张明华;基于VB自动等离子喷焊控制系统研究[D];兰州理工大学;2005年
10 赫晓龙;微机控制等离子喷焊系统研究[D];兰州理工大学;2004年
,本文编号:2423026
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2423026.html