数控车床静压气体轴系回转误差补偿及控制方法的研究
[Abstract]:With the rapid development of science and technology, the accuracy of CNC lathe shafting becomes more and more demanding. Therefore, in order to meet the increasing requirement of high precision, it is necessary to find an economical, reasonable and technically feasible solution. In order to improve the rotary accuracy of the spindle of CNC lathe, this paper presents the introduction of active magnetic bearing on the hydrostatic gas bearing used, and the use of the hydrostatic gas bearing as the main bearing element. The magnetic bearing is used as an auxiliary element to correct the rotation error of the spindle. This kind of structure has the advantages of high rotation precision, large bearing capacity, large stiffness and good controllability. The spindle system of CNC lathe consists of two hydrostatic gas bearings, two active magnetic bearings and one thrust bearing. Firstly, the structure design and parameter determination of hydrostatic gas bearing and magnetic bearing are carried out. Through the study and analysis of the spindle system, the static characteristics of the hydrostatic gas bearing, the electromagnetic force of the magnetic bearing and the dynamic models of the single degree of freedom and five degrees of freedom of the system are established and analyzed. Then the rotation error of the spindle is measured and the harmonic removal is carried out to obtain the accurate image of the rotation error. Finally, the control system is designed: the system is a closed system with feedback. Three eddy current displacement sensors are installed on the front and back ends of the spindle, and the collected values are used as the input of the system. The digital signal is transferred into the digital signal processor (DSP), which is used as the hardware CPU. The control law of the magnetic bearing is obtained, and the signal is loaded into the magnetic bearing through the D / A conversion to correct the rotation error of the spindle. In this paper, the fuzzy self-tuning PID control method is used to build the system simulation platform according to the control requirements of the system. The simulation verifies whether the rotation accuracy of the spindle can be greatly improved under the action of fuzzy adaptive PID control. The feasibility and practicability of the control system are verified to improve the precision of spindle rotation. The control system of hydrostatic gas bearing shafting of NC lathe based on TMS320LF2407A DSP is designed, and the hardware and software parts of the system are designed.
【学位授予单位】:东北林业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG519.1
【参考文献】
相关期刊论文 前10条
1 张景和,冯晓国,刘伟;用反向法测轴系回转误差[J];光学精密工程;2001年02期
2 黄峰,汪岳峰,顾军,周冰;模糊参数自整定PID控制器的设计与仿真研究[J];光学精密工程;2004年02期
3 李树森;陈素平;田倩;元月;;基于主轴回转误差的模糊自整定PID控制器设计[J];安徽农业科学;2014年07期
4 李旗,方海燕;磁浮主轴回转精度的测试[J];机床与液压;2004年08期
5 樊涛,李树森;静压气体轴承技术的发展及应用[J];林业机械与木工设备;2004年11期
6 周菲,王庆军;机床主轴回转误差对加工精度的影响[J];煤矿现代化;2002年05期
7 苏兵;侯予;周权;赵红利;陈纯正;;透平膨胀机动压气体止推轴承的试验研究[J];润滑与密封;2006年11期
8 洪迈生,邓宗煌,陈健强,大园成夫;精确的时域三点法圆度误差分离技术[J];上海交通大学学报;2000年10期
9 王志强;刘刚;李红;;磁轴承用电涡流位移传感器串扰产生及抑制方法研究[J];仪器仪表学报;2010年05期
10 苏恒,洪迈生,李自军,魏元雷;机床主轴运动误差的在线高精度测量[J];制造技术与机床;2003年03期
相关硕士学位论文 前5条
1 方海燕;磁浮主轴回转精度的测试[D];西安理工大学;2000年
2 刘庆国;超精密气磁轴承轴系动力学及控制方法的研究[D];东北林业大学;2004年
3 马兰兰;精密气磁轴承的误差补偿和控制方法的研究[D];东北林业大学;2006年
4 曹永洁;基于激光测试技术的数控机床误差识别与补偿研究[D];浙江大学;2006年
5 朱贵宪;基于TMS320LF2407A DSP的电机数据采集与控制系统[D];山东大学;2008年
,本文编号:2465880
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2465880.html