300M超高强钢高温本构模型的研究
[Abstract]:With the innovation of technology, physical simulation and numerical simulation technology have been more and more widely used in various research fields, and the accuracy of simulation depends on the constitutive model of materials. Therefore, The constitutive relation of materials has always been a hot research topic in the field of materials and mechanics. 300m ultra-high strength steel has good mechanical comprehensive properties and has been widely used in aircraft load-bearing components. The mechanical properties of 300m steel at room temperature can be obtained from the corresponding data, but the research on the Rheological stress of 300m steel during plastic deformation at high temperature is still very insufficient. In this paper, the hot deformation Constitutive Model and Metal cutting deformation Constitutive Model of 300m Steel are studied. The main research contents of this paper are as follows: firstly, the stress-strain curve of 300m steel in a certain range of deformation conditions is obtained by high temperature compression experiment on a thermal simulation testing machine. Combined with the experimental results, the influence of convective stress on each thermal deformation parameter is analyzed. the results show that the flow stress decreases significantly with the increase of temperature when the strain rate is constant. When the temperature is constant, the flow stress increases with the increase of strain rate. Secondly, based on the data obtained from high temperature hot compression experiment, the hot deformation constitutive model of 300m steel is studied, and the hot deformation constitutive model of 300m steel is established by using Arrhenius equation and BP neural network, respectively. To express the relationship between flow stress and deformation temperature and strain rate. By predicting the Rheological stress value and its changing trend, the above two models are analyzed and evaluated, and the advantages and disadvantages of the two models are pointed out. Finally, the difference between the thermal deformation constitutive model and the metal cutting model is analyzed and pointed out, and combined with the existing cutting deformation constitutive equation and experimental method, according to the experimental purpose and the existing experimental conditions, By using the method of combining experiment with cutting theory analysis, the modeling route of solving Johnson-Cook model is determined, that is, by using quasi-static compression experiment and orthogonal cutting experiment, the experimental results are processed and calculated. The values of five coefficients in the Johnson-Cook Constitutive relation are obtained respectively, and the Johnson-Cook Constitutive relation equation of 300m steel is obtained. Based on AdvantEdge FEM software, the Johnson-Cook constitutive relation is introduced to simulate the orthogonal cutting process, and the accuracy of the constitutive model is verified by the simulation results.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG142.1
【相似文献】
相关期刊论文 前10条
1 李雄,张鸿冰,阮雪榆,罗中华,张艳;40Cr钢流变应力的分析及模拟[J];材料工程;2004年11期
2 陈文;林林;邓成林;;3104铝合金热变形流变应力模型[J];铝加工;2007年05期
3 陈永禄;陈文哲;洪丽华;傅高升;;铝及其合金高温流变应力模型的研究现状[J];铸造技术;2008年09期
4 陈永禄;傅高升;陈文哲;;铝及其合金高温流变应力模型的研究现状[J];特种铸造及有色合金;2008年S1期
5 隆平;潘清林;覃银江;何运斌;梁文杰;;含钪Al-Cu-Li-Zr合金热压缩变形流变应力行为[J];轻金属;2011年01期
6 吴文祥;靳丽;董杰;丁文江;;热压缩过程中Mg-Nd-Zn-Zr合金流变应力的预测(英文)[J];Transactions of Nonferrous Metals Society of China;2012年05期
7 许云波,刘相华,王国栋;低碳钢低温区流变应力的预测[J];钢铁研究学报;2002年02期
8 袁鸽成,韩冰,刘文娟;Al-8.4Zn-2.2Mg-2.4Cu合金高温压缩变形的流变应力[J];机械工程材料;2003年08期
9 韩冬峰,郑子樵,蒋呐,李劲风;高强可焊2195铝-锂合金热压缩变形的流变应力[J];中国有色金属学报;2004年12期
10 刘万辉;鲍爱莲;崔新;;变形速率对7075铝合金流变应力的影响[J];黑龙江科技学院学报;2005年06期
相关会议论文 前10条
1 沙庆云;王道远;范丹宇;黄浩东;沙孝春;杨旭;;低碳钢热连轧过程中的平均流变应力的分析[A];中国金属学会2003中国钢铁年会论文集(4)[C];2003年
2 朱振华;袁鸽成;李仲华;吴其光;吴锡坤;;5A30铝合金热变形的流变应力及材料常数[A];低碳技术与材料产业发展研讨会论文集[C];2010年
3 李锡武;熊柏青;张永安;华成;王锋;朱宝宏;熊益民;;新型Al-Zn-Mg-Cu合金热变形流变应力特征[A];中国有色金属学会第十二届材料科学与合金加工学术年会论文集[C];2007年
4 李俊鹏;沈健;;7050高强铝合金高温塑性变形的流变应力研究[A];中国有色金属学会合金加工学术委员会2008学术年会论文集[C];2008年
5 陈孙艺;;屈服极限和流变应力以及塑性极限载荷的确定方法综述[A];第三届全国管道技术学术会议压力管道技术研究进展精选集[C];2006年
6 王沁峰;傅高升;王火生;陈永禄;陈文哲;;变形条件对易拉罐用铝材高温流变应力的影响[A];福建省科协第三届学术年会装备制造业专题学术年会论文集[C];2003年
7 袁晓波;张军良;李中奎;郑欣;张小明;周军;付洁;张廷杰;;一种新型Ni基电阻合金的热模拟加工流变应力[A];第十届全国青年材料科学技术研讨会论文集(C辑)[C];2005年
8 陈永禄;傅高升;陈文哲;;熔体处理对易拉罐用铝材高温压缩流变应力特征的影响[A];全国第十三届轻合金加工学术交流会论文集[C];2005年
9 闫飞昊;李士凯;王美娇;杨辉;;TB6合金热压缩流变应力行为[A];第十四届全国钛及钛合金学术交流会论文集(上册)[C];2010年
10 刘驰;张晓芳;;1700mm热连轧机材料流变应力应用研究[A];中国金属学会2003中国钢铁年会论文集(4)[C];2003年
相关硕士学位论文 前10条
1 王火生;易拉罐用铝材高温变形的流变应力行为及微观组织特征[D];福州大学;2004年
2 周继锋;中碳马氏体组织温压缩的流变应力及微观组织与力学性能[D];燕山大学;2006年
3 王小巩;抗大变形管线钢热变形行为及流变应力模型研究[D];燕山大学;2013年
4 葛磊;45~#、65Mn温变形流变应力及组织特性的研究[D];燕山大学;2012年
5 王沁峰;熔体处理对易拉罐用铝材热变形的流变应力与微观组织的影响[D];福州大学;2005年
6 曹秋野;棒材热连轧奥氏体再结晶过程及流变应力模拟研究[D];昆明理工大学;2006年
7 赖静;含氢BT20合金热变形流变应力和组织演变的ANN模型[D];哈尔滨工业大学;2006年
8 刘俊林;基于BP神经网络的2.25Cr1Mo0.25V钢高温流变应力模型研究[D];太原科技大学;2014年
9 鲁博;非恒定热变形条件下316LN的流变应力与组织演变[D];燕山大学;2013年
10 张红;1Cr20Co6Ni2WMoV钢的流变应力模型及热处理制度对其微观组织的影响[D];昆明理工大学;2007年
本文编号:2481987
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2481987.html