高强钢热冲压成形性及微观力学性能数值预测
[Abstract]:In ord to realize that light weight of the automobile, reduce the fuel consumption and ensure the impact safety performance, the high-strength steel plate hot stamping technology is widely applied to the manufacture of automobile body structural parts. In contrast to the traditional cold press forming process, the hot stamping process includes the heating, forming and quenching process of the sheet, which is a complex process of the mutual coupling between the temperature field, the stress field and the phase transition field. In the process, the temperature of the sheet and the used mold is changed, and the formability of the sheet can be deteriorated due to the improper punching process parameters and the die design, and the microstructure in the sheet metal can also change. Therefore, the accurate modeling and numerical prediction of the hot stamping process is of great significance for guiding the practical hot stamping industrial production. This dissertation is based on the mutual coupling between the temperature field, the stress field and the phase change field during the hot stamping process of the high-strength steel plate, and the heat is established. Constitutive equation of the coupling between the force and the phase-change multi-physical field. The effect of temperature and strain rate on the flow behavior of the material was studied by means of thermal tensile test. The dynamic performance of the bonding material in the high temperature ferrite, pearlite, bainite and martensite state is considered, and the effect of the equivalent effect force on the material diffusion type phase change dynamics is taken into consideration. The finite element software King Mesh Analysis System _ Hot Stamps (KMAS _ HS), which can be used for numerical simulation of hot stamping of high-strength steel plates, is developed by the dynamic explicit finite element method. (2) The hot stamping three-dimensional temperature field analysis and prediction module is developed. In this paper, the heat transfer process of hot stamping is introduced, and the heat-stamping heat transfer differential equation is established by considering the latent heat release of the phase change of the micro-structure of the sheet. Combined with the initial and boundary conditions of the transient temperature field of the hot stamping, the differential equation of the three-dimensional transient temperature field of the hot stamping is solved by the Galerkin weighted margin method, and the general form of the finite element of the thermal stamping transient temperature field is derived. Respectively adopting a temperature shell unit and a three-dimensional tetrahedral unit to carry out finite element dispersion on the hot stamping plate and the mould with the cooling system respectively. The temperature distribution of the plate, the three-dimensional solid mold and the mold cooling pipeline during the hot stamping process of the U-type test piece is calculated by the analysis module, and compared with the actual test, it can be seen that the numerical results are consistent with the test results. (3) The hot stamping sheet forming analysis and prediction module was developed. Four non-coupled ductile fracture criteria (Oh, Brozzo, Ayada, and Rice-Tracey) and the Lemaitre model based on the full-coupled continuous damage mechanics were introduced into the hot-stamping finite element software KMAS _ HS, and their prediction of the formability of the hot stamping sheet was compared. the forming limit test of the high-strength steel plate at high temperature is carried out, the forming limit curve at different temperatures is obtained, The critical constants of the material related to the temperature in the four ductile fracture criteria are determined. The thermal stretching process is numerically simulated, and the material damage parameters related to the temperature and strain rate are determined by means of the optimization method, the numerical simulation and the test. The formability of a B-column in a hot stamping process is predicted by four ductile fracture criteria and the Lembaitre damage mechanics model, and the corresponding test verification is carried out. It is concluded that the Lemeritre model based on the continuum damage mechanics can accurately predict the toughness damage and fracture in the hot stamping process. Then, based on the model of the damage mechanics, the effects of the blank holder force and the friction coefficient on the formability, damage evolution and the convex die force of the hot stamping sheet are further studied. (4) The microstructure evolution of the hot stamping and the prediction of the mechanical properties of the parts after forming are developed. By using the Newton-Raphson iteration method to solve the diffusion-type phase-change dynamic equation, the isothermal phase-change dynamic model is applied to the non-isothermal process by using the Scheil superpose criterion, and the effect of the isodynamic force on the time of the diffusion-type phase change inoculation is taken into consideration. In the process of hot stamping, the microstructure evolution of the B-pillar hot stamping process was simulated by using the Li and Akerstrom diffusion-type phase-change kinetics model in combination with the Kostinian-Marburger (K-M) non-diffusion type phase change dynamics model, and the mechanical properties of the molded parts were predicted by the Maynard hardness model. The results show that the result of the combination of the Li model with the K-M model is better than that of the test results. The thermal stamping process of the S-beam gradient was predicted with a stronger adaptive Lee diffusion-type phase-change dynamic model and a Yu non-diffusion-type phase-change dynamic model for the gradient-hardness thermal stamping process. The material parameters in the Lee model are determined based on the continuous cooling transition curve of the material in the stress free state, and the hardness prediction model associated with the cooling rate is also established and calibrated. The results show that the hardness gradient distribution of the part can be realized by the method of heating and cooling of the die zone, and the consistency of the numerical results with the test results shows that the established multi-field coupling constitutive equation, the phase change dynamics model and the hardness prediction model are correct.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG306
【相似文献】
相关期刊论文 前10条
1 王传勇;李冲;;冲压成形的质量分析及质量控制方法探析[J];现代商贸工业;2013年05期
2 ;轮辋体冲压成形新工艺[J];锻压机械;1972年01期
3 吴百海,虞秀敏,,吴百光,吴申卉,何绍鼎,罗振隆,何柏生,杨舒放;壳体冲压成形全自动线的设计与研究[J];机械开发;1994年02期
4 吴为民,高文胜,刘娆,许东卫;液中放电金属冲压成形研究[J];电加工;1998年05期
5 肖小亭,孙友松,廖毅娟,章争荣;豪华型钢瓦冲压成形[J];锻压技术;2000年06期
6 肖小亭,孙友松,廖毅娟,章争荣;豪华型钢瓦冲压成形[J];模具工业;2000年12期
7 张举东;冷轧薄板与冲压成形性[J];模具技术;2001年01期
8 杨绍明,胡亚民;汽车车厢固定角铁的冲压成形[J];机械工人;2001年01期
9 周金龙 ,蔡添吉 ,庄志宇;钛金属笔记型电脑上壳件冲压成形技术[J];塑性工程学报;2002年04期
10 高广军;交叉杆冲压成形的数值模拟分析及工艺优化[J];模具制造;2002年10期
相关会议论文 前10条
1 张举东;;汽车薄板与冲压成形性[A];河南省汽车工程学会首届科研学术研讨会论文集[C];2004年
2 黄国滔;杨相忠;;冲压成形中的芯块利用[A];探索创新交流--中国航空学会青年科技论坛文集[C];2004年
3 苏岚;程俊业;陈银莉;许应;戎文娟;;热冲压成形实验装置的开发和实验研究[A];第十四届中国科协年会第8分会场:钢材深加工研讨会论文集[C];2012年
4 宋子明;;汽车雨刮器托盘的冲压成形技术[A];云南省机械工程学会第七届学术年会暨十三省区市机械工程学会学术年会论文集[C];2008年
5 宋子明;;汽车雨刮器托盘的冲压成形技术[A];第四届十三省区市机械工程学会科技论坛暨2008海南机械科技论坛论文集[C];2008年
6 张莉;吴开腾;;薄钢板冲压成形的有限元模拟和分析研究[A];第五届全国强动载效应及防护学术会议暨复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集[C];2013年
7 周建忠;杨继昌;许友谊;杨兴华;张永康;;柔性化的板料激光冲压成形新技术研究[A];制造业与未来中国——2002年中国机械工程学会年会论文集[C];2002年
8 胡勇;张伟勇;袁萍;王呈方;周永清;刘光武;;船体外板冲压成形研究[A];2011年CAD/CAM学术交流会议论文集[C];2011年
9 陈秀深;;轿车车门内板的冲压成形[A];第八届全国塑性加工学术年会论文集[C];2002年
10 周建忠;杨继昌;许友谊;杨兴华;张永康;;柔性化的板料激光冲压成形新技术研究[A];第八届全国塑性加工学术年会论文集[C];2002年
相关重要报纸文章 前7条
1 中航工业黎明 杨踊 石竖鲲 王立成;特种冲压成形技术在航空发动机中的应用探讨[N];中国航空报;2012年
2 张亦筑;镁合金冲压成形技术获突破[N];中国有色金属报;2013年
3 记者 付强;辽源建立首个院士工作站[N];吉林日报;2012年
4 周贤宾 严致和;发展遇阻冲压成形业寻求突破[N];中国工业报;2004年
5 刘立忠;轧制差厚板冲压成形的研究进展[N];世界金属导报;2014年
6 刘友存 摘译;围绕用户需求开展生产工艺创新[N];中国冶金报;2008年
7 刘友存 摘译;技术创新保证汽车用钢有效应用[N];中国冶金报;2008年
相关博士学位论文 前10条
1 吕萌萌;超高强度硼钢板热冲压成形数值模拟及试验研究[D];吉林大学;2016年
2 马闻宇;AA6082铝合金热冲压成形控性规律研究及工艺优化[D];北京科技大学;2016年
3 史栋勇;高强钢热冲压成形性及微观力学性能数值预测[D];大连理工大学;2015年
4 刘大海;5052铝合金板材磁脉冲辅助冲压成形变形行为及机理研究[D];哈尔滨工业大学;2010年
5 伍杰;镍镀层金属薄板冲压成形的失效分析[D];湘潭大学;2012年
6 韩利芬;基于神经网络的薄板冲压成形中的反演问题研究[D];湖南大学;2006年
7 桂中祥;高性能硼钢热冲压成形及Al-Si镀层开裂失效行为研究[D];华中科技大学;2014年
8 侯英岢;汽车钢板冲压成形表面损伤规律与控制方法研究[D];上海交通大学;2009年
9 廖代辉;冲压成形材料性能变化及其对车身结构耐撞性影响研究[D];湖南大学;2013年
10 李小平;加油盒冲压成形数值模拟及实验研究[D];重庆大学;2005年
相关硕士学位论文 前10条
1 宋灏;汽车背门内板冲压成形与回弹的数值模拟研究[D];天津理工大学;2015年
2 孙玉双;22MnB5钢板B柱热冲压成形技术研究[D];燕山大学;2015年
3 花魁;大尺寸叶片成形过程模拟及实验研究[D];陕西理工学院;2015年
4 孙振谦;汽车围板冲压成形研究[D];沈阳理工大学;2015年
5 李晓娟;基于热—力—相变耦合的高强钢BR1500HS热冲压盒型件研究[D];上海应用技术学院;2015年
6 王列亮;多因素对铝合金板冲压成形质量影响的研究[D];南京林业大学;2015年
7 袁国兴;高强钢TRB热冲压成形工艺和试验研究[D];哈尔滨工业大学;2015年
8 张潇;亚稳态奥氏体不锈钢标准椭圆形封头温冲压温度研究[D];浙江大学;2015年
9 张磊;超高强度BR1500HS钢高温变形行为研究及热冲压过程数值模拟[D];上海大学;2015年
10 毕卢思;基于某乘用车侧围板冲压仿真分析和回弹预测[D];重庆理工大学;2015年
本文编号:2486379
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2486379.html