当前位置:主页 > 科技论文 > 金属论文 >

激光熔覆镍基单晶合金过程中晶体生长和组织分布的研究

发布时间:2019-07-05 12:32
【摘要】:镍基单晶高温合金因其优异的高温抗蠕变和高温疲劳性能被广泛的用作现代燃气轮机的高压涡轮叶片的材料。镍基单晶涡轮叶片的材料和制造费用高昂,其使用寿命受热疲劳裂纹、叶尖质量缺失、裂纹、表面磨损等诸多缺陷的影响。镍基单晶涡轮叶片的更新费用占了燃气轮机维护费用的的很大部分。通过检测和修复受损的叶片,从而延长其使用寿命,不仅可以降低燃气轮机的维护费用,而且节约了大量昂贵的合金材料。激光送粉熔覆技术作为一种高效的修复技术已经被用于多晶合金叶片的叶尖净成型修复。对于镍基单晶合金叶片,只有保持修复区域内为与基材组织一致的单晶组织,才能确保修复后的单晶叶片机械性能不会降低,实现成功修复。目前,镍基单晶涡轮叶片主要由熔模铸造方法制造。熔模铸造方法具有生产周期长、费用高昂、较高的失败率和容易产生铸造缺陷等缺点,导致单晶叶片制造费用高昂。激光送粉熔覆技术结合CAD、CAM和反馈控制等技术后可以直接成型各种材料的部件。因此,激光送粉熔覆技术不仅可用于单晶涡轮叶片的修复,还提供了直接快速成型单晶涡轮叶片的可行性。而采用激光技术直接净成型单晶叶片的关键就是实现多层多道激光熔覆过程中单晶组织的连续性生长。然而激光送粉熔覆单晶合金过程中,熔池内晶体生长受到诸多因素的影响,非常难以控制。因此,研究激光送粉熔覆镍基单晶合金过程中的传输现象和单晶晶体生长机理和组织分布非常有意义,也有助于单晶叶片修复和制造技术的飞发展。为了更好地理解激光送粉熔覆单晶合金过程中的传输现象,本研究中建立了一个三维瞬态数值模型。该数值模型定量研究激光-粉末相互作用、热传导、熔化、凝固、液态金属流场、重熔和搭接等诸多物理详细,并分析讨论了激光功率、扫描速度和送粉率等工艺参数对传输现象的影响。在建立的三维数值模型的基础上,一个新的晶体生长模型被建立并耦合进之前的三维模型来计算熔池凝固过程中凝固界面上晶体生长行为和熔覆层内微观组织的分布。新耦合的数值模型计算了工艺参数如激光功率、扫描速度、送粉率、同轴喷嘴倾角、基材晶体方向等对晶体生长和微观组织分布的影响,并与实验结果进行对照分析。针对单晶叶片的叶尖修复,数值优化了激光薄壁熔覆过程中保持单晶组织连续生长的工艺参数。在此基础上,进一步研究而来激光多层多道熔覆过程中的晶体生长和组织分布,并分析了搭接率和扫描路径对晶体生长和微观组织分布的影响。在数值模拟结果的基础上,通过MATLAB构建了一个数学模型来计算单晶组织连续生长的工艺窗口。于此同时,通过数值模拟和实验结果分析了多层多道激光熔覆单晶合金过程中裂纹出现的机理,并设计了辅助工艺方法控制裂纹的出现。最后,激光修复和制造单晶叶片的可行性进行了评估探讨。
[Abstract]:The nickel-based single-crystal high-temperature alloy is widely used as a material for high-pressure turbine blades of modern gas turbines because of its excellent high-temperature creep and high-temperature fatigue properties. The material and manufacturing cost of the nickel-based single-crystal turbine blade are high, and the service life of the nickel-based single-crystal turbine blade is high, and the service life of the nickel-based single-crystal turbine blade is affected by various defects such as fatigue crack, loss of tip quality, The cost of the nickel-based single-crystal turbine blade is a significant part of the maintenance of the gas turbine. By detecting and repairing the damaged blades, the service life of the damaged blades can be prolonged, the maintenance cost of the gas turbine can be reduced, and a large amount of expensive alloy materials are saved. Laser powder-feeding and cladding technology has been used as a high-efficiency repair technology for blade tip net-forming and repair of polycrystalline alloy blades. In that nickel-based single-crystal alloy blade, only the single-crystal tissue which is consistent with the substrate is kept in the repair area, so that the mechanical property of the repaired single-crystal blade can not be reduced, and the successful repair can be realized. At present, the nickel-based single-crystal turbine blade is mainly manufactured by the investment casting method. The investment casting method has the defects of long production period, high cost, high failure rate and easy production of casting defects, and the like, and the manufacturing cost of the single crystal blade is high. Laser powder-feeding and cladding technology can be used to directly form parts of various materials, such as CAD, CAM and feedback control. Therefore, the laser powder feeding and cladding technology can not only be used for the repair of single crystal turbine blades, but also provides the feasibility of directly and rapidly forming single crystal turbine blades. And the key of using the laser technology to directly clean the single crystal blade is to realize the continuous growth of the single crystal tissue in the multi-layer multi-channel laser cladding process. However, in the process of laser-feeding and cladding of single crystal alloy, the crystal growth in the molten pool is affected by many factors, and it is very difficult to control. Therefore, it is of great significance to study the transmission phenomenon and the mechanism of single crystal growth and the distribution of the structure in the process of the laser-feeding and cladding of the Ni-based single crystal alloy, which can also contribute to the development of the single-crystal blade repair and manufacturing technology. In order to better understand the transmission of laser powder in the process of single crystal alloy, a three-dimensional transient numerical model is established in this study. The numerical model is used to quantitatively study the laser-powder interaction, heat conduction, melting, solidification, liquid metal flow field, remelting and lapping. The effects of laser power, scanning speed and powder feeding rate on the transmission are also discussed. On the basis of the established three-dimensional numerical model, a new crystal growth model was established and coupled into the previous three-dimensional model to calculate the crystal growth behavior and the distribution of the microstructure in the cladding layer during the solidification of the molten pool. The effects of process parameters such as laser power, scanning speed, powder feeding rate, coaxial nozzle inclination angle and substrate crystal orientation on the crystal growth and microstructure distribution are calculated and compared with the experimental results. Aiming at the tip repair of single crystal blade, the process parameters of continuous growth of single crystal are optimized in the process of laser thin-wall cladding. On this basis, the crystal growth and tissue distribution in the laser multi-layer multi-channel cladding process are further studied, and the effects of the lapping rate and the scanning path on the crystal growth and the microstructure distribution are also analyzed. On the basis of the numerical simulation results, a mathematical model is constructed to calculate the process window of the continuous growth of the single crystal tissue. At the same time, through the numerical simulation and the experimental results, the mechanism of the crack in the process of multi-layer multi-channel laser cladding single crystal alloy is analyzed, and the auxiliary process method is designed to control the appearance of the crack. Finally, the feasibility of laser repair and the manufacture of single crystal blade is discussed.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG665;TG132.3

【相似文献】

相关期刊论文 前10条

1 万家义;中国第十二届晶体生长学术会讯息[J];化学研究与应用;2000年02期

2 王继扬;晶体生长形态学研究新进展──评介《晶体生长形态学》一书[J];人工晶体学报;2000年01期

3 闵乃本;晶体生长的缺陷机制[J];人工晶体学报;2000年S1期

4 李银安;用稳定的激光控制空间的晶体生长[J];物理;2001年11期

5 ;晶体生长设备系列产品[J];西安理工大学学报;2002年02期

6 陈勇,邵曼君,李竹川;应用环境扫描电镜研究硫酸钾小晶体生长[J];电子显微学报;2002年05期

7 张学华,罗豪u&,仲维卓;负离子配位多面体生长基元模型及其在晶体生长中的应用[J];中国科学E辑:技术科学;2004年03期

8 ;第14届全国晶体生长与材料学术会议(第一轮通知)[J];结构化学;2006年04期

9 ;第14届全国晶体生长与材料学术会议(第二轮通知)[J];稀有金属;2006年05期

10 ;蒋民华获亚洲晶体生长与晶体技术奖[J];中国基础科学;2008年03期

相关会议论文 前10条

1 陈万春;宋友庭;陈小龙;;晶体生长的空间实验和地基研究[A];第15届全国晶体生长与材料学术会议论文集[C];2009年

2 李式凤;林树坤;;新型软X射线分光晶体磺基水杨酸盐类晶体生长、结构及性能研究[A];第15届全国晶体生长与材料学术会议论文集[C];2009年

3 张学华;罗豪u&;仲维卓;;负离子配位多面体生长基元模型基础及几个应用实例[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年

4 陈勇;邵曼君;李竹川;;应用环境扫描电镜研究硫酸钾小晶体生长[A];第十二届全国电子显微学会议论文集[C];2002年

5 殷绍唐;;熔体法晶体生长微观机理的原位实时研究[A];第十六届全国晶体生长与材料学术会议论文集-大会报告[C];2012年

6 孙辛;寇明喜;;晶体生长、培养的自动化和高通量化的解决方案[A];中国晶体学会第四届全国会员代表大会暨学术会议学术论文摘要集[C];2008年

7 金蔚青;潘秀红;刘岩;;晶体本征生长速度波动的理论和实验空间晶体生长研究的反思[A];中国空间科学学会空间材料专业委员会2009学术交流会论文集[C];2009年

8 仲维卓;罗豪u&;张钦辉;华素坤;;晶体生长机理的几个问题[A];第15届全国晶体生长与材料学术会议论文集[C];2009年

9 金蔚青;;二十一世纪晶体生长机理研究的新概念——无量纲参数研究材料制备科学[A];第15届全国晶体生长与材料学术会议论文集[C];2009年

10 马建华;仓怀兴;;空间蛋白质晶体生长新技术[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

相关重要报纸文章 前6条

1 杨志奇;第十六届国际晶体生长会议在京召开[N];中国建材报;2010年

2 记者 王桂兰;第三届亚洲晶体生长与晶体技术会议举行[N];中国建材报;2005年

3 范文忠;上虞有种“炼丹炉”能“炼”出神奇宝贝[N];杭州日报;2007年

4 高琴伟;晶龙晶体生长设备替代进口[N];中国企业报;2008年

5 薛福勇 冯月剑;自主研发抵御产业“寒冬”[N];首都建设报;2012年

6 基因潮综合报道;航天生物产业与“神舟”齐飞[N];中国高新技术产业导报;2002年

相关博士学位论文 前10条

1 杨睿;ZnTe的晶体生长、性能表征与缺陷研究[D];西北工业大学;2015年

2 刘朝阳;激光熔覆镍基单晶合金过程中晶体生长和组织分布的研究[D];上海交通大学;2015年

3 高文兰;驰豫铁电铌酸钙钡系列晶体生长与性能研究[D];山东大学;2010年

4 陈天华;仿生物矿化模板法调控晶体生长机理与试验研究[D];吉林大学;2012年

5 谢会东;含铋功能晶体生长与性质研究[D];清华大学;2007年

6 陈捷;上称重法生长掺稀土钨酸钆钾及若干新晶体结构设计与制备[D];福州大学;2010年

7 李国华;纳米TiO_2(金红石锐钛矿)粉体晶相控制研究与晶体生长界面相模型[D];中南大学;2001年

8 申少华;廉价矿物原料水热法制备沸石分子筛的形成机理与晶体生长模型研究[D];中南大学;2001年

9 汪盛;用原子力显微镜(AFM)进行蛋白质晶体生长及成核研究[D];重庆大学;2003年

10 鲁路;大尺寸CsB_3O_5晶体生长及应用研究[D];中国科学院研究生院(理化技术研究所);2008年

相关硕士学位论文 前10条

1 张晓彤;Nd:CNGS晶体生长及性质研究[D];山东大学;2015年

2 苏佳乐;PET晶体生长的影响因素研究[D];北京工业大学;2015年

3 王静;微重力对胶原纤维化和羟基磷灰石晶体生长的影响研究[D];扬州大学;2015年

4 康道远;不同旋转半径及甲紫掺杂条件下KDP晶体生长过程的实验研究[D];重庆大学;2015年

5 王晓东;三温区晶体生长炉控制系统设计与控制方法研究[D];东北大学;2014年

6 肖志夏;NiCl_2及CoS_2晶体生长数值模拟[D];北京理工大学;2016年

7 颜新青;金属晶体生长机制的分子动力学模拟研究[D];北京理工大学;2016年

8 张亮;晶体生长中的计算机控制研究[D];长春理工大学;2005年

9 蒋宛莉;中国古代晶体生长史初探[D];山东大学;2007年

10 曾小平;大型晶体生长系统(设备)关键技术研究[D];西安理工大学;2008年



本文编号:2510527

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2510527.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1436e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com