当前位置:主页 > 科技论文 > 计算机论文 >

支持随机服务请求的云虚拟机按需物理资源分配方法

发布时间:2018-01-09 18:28

  本文关键词:支持随机服务请求的云虚拟机按需物理资源分配方法 出处:《软件学报》2017年02期  论文类型:期刊论文


  更多相关文章: 云计算 虚拟化 随机服务请求 灰色波形预测 按需资源分配


【摘要】:针对云平台按负载峰值需求配置处理机资源、提供单一的服务应用和资源需求动态变化导致资源利用率低下的问题,采用云虚拟机中心来同时提供多种服务应用.利用灰色波形预测算法对未来时间段内到达虚拟机的服务请求量进行预测,给出兼顾资源需求和服务优先等级的虚拟机服务效用函数,以最大化物理机的服务效用值为目标,为物理机内的各虚拟机动态配置物理资源.通过同类虚拟机间的全局负载均衡和多次物理机内各虚拟机的物理资源再分配,进一步增加服务请求量较大的相应类型的虚拟机的物理资源分配量.最后,给出了虚拟机中心基于灰色波形预测的按需资源分配算法ODRGWF.模拟实验结果表明,该算法能够有效地提高云平台中处理机的资源利用率,对提高用户请求完成率以及服务质量都具有实际意义.
[Abstract]:For the cloud platform to configure processor resources according to the peak load requirements, providing a single service application and dynamic changes of resource requirements lead to low resource utilization. The cloud virtual machine center is used to provide a variety of service applications at the same time, and the grey waveform prediction algorithm is used to predict the number of service requests arriving at the virtual machine in the future. A virtual machine service utility function which takes into account resource requirement and service priority level is given. The purpose of this function is to maximize the service utility value of the physical machine. The physical resources are dynamically configured for each virtual machine in the physical machine. Through the global load balancing among the same virtual machines and the redistribution of the physical resources of each virtual machine in the physical machine several times. Further increase the amount of physical resource allocation of the corresponding types of virtual machines with large service requests. Finally. An on-demand resource allocation algorithm ODRGWFbased on gray waveform prediction for virtual machine center is presented. The simulation results show that the algorithm can effectively improve the resource utilization of processors in cloud platform. It is of practical significance to improve the completion rate of user requests and the quality of service.
【作者单位】: 同济大学计算机科学与技术系;郑州轻工业学院软件学院;国家高性能计算机工程技术中心同济分中心;南通大学计算机科学与技术学院;宁波大学计算机科学与技术系;
【基金】:国家高技术研究发展计划(863)(2009AA012201) 国家自然科学基金(61402244) 上海市优秀学科带头人计划(10X D1404400) 华为创新研究计划(IRP-2013-12-03) 高效能服务器和存储技术国家重点实验室开放基金(2014 HSSA10) 河南省科技创新人才计划([2015]4) 浙江省公益技术应用研究项目(2014C31059)~~
【分类号】:TP302
【正文快照】: 3(国家高性能计算机工程技术中心同济分中心,上海200092)4(南通大学计算机科学与技术学院,江苏南通226019)5(宁波大学计算机科学与技术系,浙江宁波315211)中文引用格式:曹洁,曾国荪,匡桂娟,张建伟,马海英,胡克坤,钮俊.支持随机服务请求的云虚拟机按需物理资源分配方法.软件学

【相似文献】

相关期刊论文 前10条

1 曹晓刚;;Java虚拟机的10年[J];程序员;2005年07期

2 宋韬;盘细平;罗元柯;倪国军;;Java虚拟机在嵌入式DSP系统上的实现[J];计算机应用与软件;2007年04期

3 刘黎波;;Java虚拟机拦截原理研究[J];科技风;2008年21期

4 刘治波;;Java虚拟机简析[J];济南职业学院学报;2008年01期

5 郝帅;;Java虚拟机中相关技术的探讨[J];成功(教育);2008年08期

6 李霞;;系统虚拟机关键技术研究[J];微型电脑应用;2010年03期

7 郑晓珑;孔挺;;虚拟机的安全风险与管理[J];硅谷;2010年16期

8 李学昌;平淡;;为速度而战,虚拟机内外兼修[J];电脑爱好者;2010年18期

9 王惠萍;张海龙;冯帆;王建华;;Java虚拟机使用及优化[J];计算机与网络;2010年21期

10 郑婷婷;武延军;贺也平;;云计算环境下的虚拟机快速克隆技术[J];计算机工程与应用;2011年13期

相关会议论文 前10条

1 孟广平;;虚拟机漂移网络连接方法探讨[A];中国计量协会冶金分会2011年会论文集[C];2011年

2 段翼真;王晓程;;可信安全虚拟机平台的研究[A];第26次全国计算机安全学术交流会论文集[C];2011年

3 李明宇;张倩;吕品;;网络流量感知的虚拟机高可用动态部署研究[A];2014第二届中国指挥控制大会论文集(上)[C];2014年

4 林红;;Java虚拟机面向数字媒体的应用研究[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(上册)[C];2006年

5 杨旭;彭一明;刑承杰;李若淼;;基于VMware vSphere 5虚拟机的备份系统实现[A];中国高等教育学会教育信息化分会第十二次学术年会论文集[C];2014年

6 沈敏虎;查德平;刘百祥;赵泽宇;;虚拟机网络部署与管理研究[A];中国高等教育学会教育信息化分会第十次学术年会论文集[C];2010年

7 李英壮;廖培腾;孙梦;李先毅;;基于云计算的数据中心虚拟机管理平台的设计[A];中国高等教育学会教育信息化分会第十次学术年会论文集[C];2010年

8 朱欣焰;苏科华;毛继国;龚健雅;;GIS符号虚拟机及实现方法研究[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年

9 于洋;陈晓东;俞承芳;李旦;;基于FPGA平台的虚拟机建模与仿真[A];2007'仪表,自动化及先进集成技术大会论文集(一)[C];2007年

10 丁涛;郝沁汾;张冰;;内核虚拟机调度策略的研究与分析[A];'2010系统仿真技术及其应用学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 ;虚拟机的生与死[N];网络世界;2008年

2 本报记者 卜娜;高性能Java虚拟机将在中国云市场释能[N];中国计算机报;2012年

3 本报记者 邱燕娜;如何告别虚拟机管理烦恼[N];中国计算机报;2012年

4 ;首批通过云计算产品虚拟机管理测评名单[N];中国电子报;2014年

5 申琳;虚拟机泛滥 系统安全怎么办[N];中国计算机报;2008年

6 Tom Henderson邋沈建苗 编译;虚拟机管理的五大问题[N];计算机世界;2008年

7 盆盆;真实的虚拟机[N];中国电脑教育报;2004年

8 本版编辑 综合 编译整理 田梦;管理好虚拟机的全生命周期[N];计算机世界;2008年

9 李婷;中国研制出全球最快反病毒虚拟机[N];人民邮电;2009年

10 张弛;虚拟机迁移走向真正自由[N];网络世界;2010年

相关博士学位论文 前10条

1 宋翔;多核虚拟环境的性能及可伸缩性研究[D];复旦大学;2014年

2 王桂平;云环境下面向可信的虚拟机异常检测关键技术研究[D];重庆大学;2015年

3 周真;云平台下运行环境感知的虚拟机异常检测策略及算法研究[D];重庆大学;2015年

4 郭芬;面向虚拟机的云平台资源部署与调度研究[D];华南理工大学;2015年

5 周傲;高可靠云服务供应关键技术研究[D];北京邮电大学;2015年

6 代炜琦;云计算执行环境可信构建关键技术研究[D];华中科技大学;2015年

7 刘圣卓;面向虚拟集群的镜像存储与传输优化[D];清华大学;2015年

8 彭成磊;云数据中心绿色节能需求的虚拟机负载均衡技术研究[D];南京大学;2016年

9 赵长名;IaaS云中基于资源感知的虚拟机资源管埋[D];电子科技大学;2016年

10 许小龙;支持绿色云计算的资源调度方法及关键技术研究[D];南京大学;2016年

相关硕士学位论文 前10条

1 潘飞;负载相关的虚拟机放置策略研究[D];杭州电子科技大学;2011年

2 王建一;混合型桌面云高可用性研究与实现[D];华南理工大学;2015年

3 周衡;云计算环境下虚拟机优化调度策略研究[D];河北大学;2015年

4 罗仲皓;基于OpenStack的私有云计算平台的设计与实现[D];华南理工大学;2015年

5 李子堂;面向负载均衡的虚拟机动态迁移优化研究[D];辽宁大学;2015年

6 张煜;基于OpenStack的“实验云”平台的研究与开发[D];西南交通大学;2015年

7 曾文琦;面向应用服务的云规模虚似机性能监控与负载分析技术研究[D];复旦大学;2013年

8 施继成;面向多核处理器的虚拟机性能优化[D];复旦大学;2014年

9 游井辉;基于虚拟机动态迁移的资源调度策略研究[D];华南理工大学;2015年

10 方良英;云平台的资源优化管理研究与实现[D];南京师范大学;2015年



本文编号:1402190

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1402190.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户133b1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com