DNA自组装逻辑运算模型
发布时间:2018-02-27 09:18
本文关键词: DNA计算 逻辑运算 自组装模型 并行计算 出处:《电子科技大学》2013年硕士论文 论文类型:学位论文
【摘要】:近年来,随着电子计算机不断发展,其运算能力得到极大的发展,在科学研究和工业领域中扮演越来越重要的作用。然而随着电子计算机的发展,其所面临的量子力学瓶颈和串行运行方式的缺陷也日渐凸显。发展新型计算机的需求日渐迫切,DNA计算机以其低功耗、高储存和高并行性等优点从众多理论模型中脱颖而出。在Aldeman于1994年成功使用DNA计算实际解决了一个复杂计算问题以后,DNA计算一直是科学界研究的热点。 虽然DNA计算相比传统电子计算具有诸多优点并且近年来取得了长足的进步,但仍处于理论研究阶段。DNA计算要实用化仍要解决很多实际困难,如何将DNA计算实用化,是急需解决的问题。电子计算经过多年的发展已相当成熟,DNA计算通过模仿电子计算以达到实用化是可行的,在模仿电子计算的同时也应该保持DNA计算的原有的优点。逻辑运算作为电子运算中最为重要的运算,是电子计算的基石。目前所存在的逻辑运算模型,更多的是停留在理论上,不能够在实验室完成。我们尝试构建一个在较简单的实验条件下能够完成的DNA计算逻辑运算模型,为DNA计算的实用化做出有益探索。我们首次构建并验证了可在较简单实验条件下完成的DNA逻辑运算模型。 为了能够在较简单的实验条件下完成逻辑运算,我们未采用测序、荧光等过于耗时或难于构建的检测手段,而采用DNA分子的长度作为输出,通过电泳作为检测手段判断体系中是否存在特定长度的分子,这样能够经济快捷的检测结果。在参考众多的经典模型,如粘贴模型、剪切模型等后,构建了两个逻辑运算模型。首先是基于环状DNA分子的逻辑运算模型。该模型利用环状分子完成逻辑运算,将特定的DNA内切酶作为逻辑运算的输入,,以环状DNA分子作为逻辑运算的运算分子,以最后体系中是否存在特定长度的DNA分子作为输出。该模型具有简单实用、易于实现的特点,能够在较短时间、较低成本的情况下实现逻辑运算。但由于环状分子不易合成且计算不够自动化,我们提出了基于自组装的DNA逻辑运算模型。利用DNA分子互补配对的特点,将带有互补缺口的DNA双链分子作为输入,将特定的DNA内切酶作为运算分子,进一步提升了DNA运算的可操作性。同时我们还进一步改进了我们的模型,使其能够进行多个逻辑运算并行,充分体现了DNA计算高并行性的优势。 最后,本文就模型的特点和存在的不足做出了总结,同时对未来研究的方向进行了展望。
[Abstract]:In recent years, with the continuous development of electronic computers, their computing power has been greatly developed, which plays an increasingly important role in the field of scientific research and industry. However, with the development of electronic computers, The bottleneck of quantum mechanics and the defect of serial operation mode are becoming more and more obvious. The need of developing new computer is becoming more and more urgent because of its low power consumption. The advantages of high storage and high parallelism stand out from many theoretical models. Since Aldeman successfully solved a complex computing problem with DNA computing in 1994, DNA computing has been a hot topic in scientific research. Although DNA computing has many advantages compared with traditional electronic computing and has made great progress in recent years, it is still in the theoretical research stage. After many years of development, DNA computing is quite mature. It is feasible for DNA computing to be practical by imitating electronic computing. Logic operation, as the most important operation in electronic operation, is the cornerstone of electronic computing. It can't be done in the lab. We're trying to build a logical model of DNA computing that can be done under simpler experimental conditions. For the first time, we have constructed and verified the DNA logical operation model which can be completed under simple experimental conditions. In order to be able to perform the logical operation under simple experimental conditions, we do not use the detection methods such as sequencing, fluorescence and so on, which are too time-consuming or difficult to construct, but use the length of the DNA molecule as the output. Electrophoresis is used as a detection method to determine whether there are molecules of specific length in the system, so that the results can be detected economically and quickly. After referring to many classical models, such as paste model, cutting model and so on, Two logical operation models are constructed. Firstly, the logic operation model based on the circular DNA molecule is constructed. The model uses the circular molecule to complete the logical operation, and takes the specific DNA endonuclease as the input of the logic operation. This model is simple, practical and easy to implement, and can be implemented in a short time, taking the cyclic DNA molecule as the arithmetic molecule of logical operation and whether there is a specific length of DNA molecule as the output in the final system. In the case of low cost, the logic operation is realized. However, because the ring molecule is not easy to synthesize and the calculation is not automatic enough, we propose a logic operation model of DNA based on self-assembly, which makes use of the characteristics of complementary pairing of DNA molecules. Using DNA double-stranded molecules with complementary gaps as inputs and specific DNA endonuclease as operational molecules, we further improve the operability of DNA operations, and we also further improve our model. It makes it possible to parallel multiple logical operations, fully reflecting the advantages of high parallelism in DNA computing. Finally, the characteristics and shortcomings of the model are summarized, and the future research direction is prospected.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP38;Q523
【参考文献】
相关期刊论文 前10条
1 高琳,许进,张军英;DNA计算的研究进展与展望[J];电子学报;2001年07期
2 尹屹梅,林祥钦;分子计算机的研究进展[J];化学进展;2001年05期
3 许进,保铮;神经网络与图论[J];中国科学E辑:技术科学;2001年06期
4 邱道文;基于完备剩余格值逻辑的自动机理论——Ⅰ.拓扑刻画[J];中国科学E辑:技术科学;2003年02期
5 陈虎,戴葵,胡守仁;环行阵列神经网络计算机系统[J];计算机研究与发展;1999年02期
6 许进,张雷;DNA计算机原理、进展及难点(Ⅰ):生物计算系统及其在图论中的应用[J];计算机学报;2003年01期
7 赵莉楠;;电子计算机发展对现代科技集成创新的启示[J];科学对社会的影响;2009年01期
8 邱道文;量子自动机的刻画[J];软件学报;2003年01期
9 邱道文;基于量子逻辑的自动机和文法理论[J];软件学报;2003年01期
10 高琳,马润年,许进;基于质粒DNA匹配问题的分子算法[J];生物化学与生物物理进展;2002年05期
本文编号:1542065
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1542065.html