量子存储支撑下Dicke模型中的原子熵不确定度研究
发布时间:2018-03-30 21:22
本文选题:量子存储 切入点:Dicke模型 出处:《湖南师范大学》2014年硕士论文
【摘要】:熵不确定关系是目前量子光学与量子信息学研究的热点问题。最近,国际上关于熵不确定关系及其应用取得了重要进展。其中最重要的进展之一是Rense小组提出的量子存储支撑下的熵不确定关系。揭示了量子存储系统具有的量子信息能够帮助人们减少或者消除被测量子系统的量子不确定性。本文运用量子存储支撑下的熵不确定关系与开放量子系统理论,研究了马尔科夫与非马尔科夫环境下,量子存储支撑的Dicke模型中原子的熵不确定度,得到了有创新意义的结果。主要内容如下: 第一章首先介绍了熵的发展、经典信息熵基本概念、量子熵基本概念;然后介绍海森堡测量不确定关系、熵不确定关系;最后介绍量子存储支撑下的熵不确定关系以及意义。 第二章简述了开放量子系统中的马尔科夫近似和马尔科夫主方程、非马尔科夫效应和主方程;介绍了Dicke模型,利用TCL方法求解了Dicke模型的精确解,并推广到两原子系统。 第三章讨论了量子存储支撑下,经典驱动场下的Dicke模型中原子的熵不确定度特性。考察了非马尔科夫效应、经典驱动场和体系失谐量对原子熵不确定度的影响。运用非马尔科夫环境的记忆效应,解释了原子熵不确定度的动力学行为。研究表明:非马尔科夫环境效应、经典驱动场和体系失谐量三者共同作用,可以极大减小系统中原子的熵不确定度。 第四章简要回顾并总结展望;
[Abstract]:Entropy uncertainty is a hot issue in quantum optics and quantum informatics. Important progress has been made on entropy uncertainty relation and its application in the world. One of the most important advances is the entropy uncertainty relationship supported by quantum storage proposed by Rense team. The quantum information of quantum storage system is revealed. Information can help people reduce or eliminate the quantum uncertainty of the measured subsystem. In this paper, the entropy uncertainty relationship supported by quantum storage and the open quantum system theory are used. In this paper, the entropy uncertainty of atoms in the Dicke model supported by quantum storage in Markov and non-Markov environments is studied, and innovative results are obtained. The main contents are as follows:. The first chapter introduces the development of entropy, the basic concept of classical information entropy, the basic concept of quantum entropy, and then introduces the measurement uncertainty relation and entropy uncertainty relation of Heisenberg. Finally, the entropy uncertainty relationship supported by quantum storage and its significance are introduced. In chapter 2, the Markov approximation and Markov master equation, non-Markov effect and main equation in open quantum system are briefly introduced, the Dicke model is introduced, and the exact solution of Dicke model is solved by TCL method, which is extended to two atomic systems. In chapter 3, the entropy uncertainty of atoms in the Dicke model supported by quantum storage is discussed, and the non-Markov effect is investigated. The effects of classical driving field and system detuning on the uncertainty of atomic entropy are studied. The dynamic behavior of the uncertainty of atomic entropy is explained by the memory effect of non-Markov environment. The entropy uncertainty of atoms in the system can be greatly reduced by the interaction of the classical driving field and the detuning of the system. Chapter four briefly reviews and summarizes the prospects;
【学位授予单位】:湖南师范大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:O413;TP333
【参考文献】
相关期刊论文 前1条
1 方卯发,陈菊梅;熵测不准关系与光场的熵压缩[J];光学学报;2001年01期
,本文编号:1687680
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1687680.html