云银行模型下基于粒子群原理的计算资源定价策略研究
发布时间:2018-04-03 13:31
本文选题:云银行运行周期 切入点:粒子群算法 出处:《云南大学》2012年硕士论文
【摘要】:随着社会经济的发展,现实生活中各个领域都要求计算机能够拥有更加强大的计算能力,并且能够更加有效快速的整合资源。因此,云计算孕育而生,带来了计算科学的一场革命。云计算能够帮助提高科学计算和商业计算的能力,对于提升国家的综合竞争力有着极其关键的作用。云计算的最终目的是共享资源和服务,因此如何有效的对云计算问题中的资源进行定价以及分配成为云计算的重要问题。 本文的重点是讨论云计算中的资源定价问题。为了讨论资源交易的过程,定义了三个参与交易的主要角色:资源提供者,云银行,资源消费者。资源提供者为云银行提供资源,云银行制定具体的资源分配规则和价格,资源消费者提出应用请求。本文引入了经济学理论来为资源价格的制定提供理论依据,云银行模型的背景下提出了以粒子群算法为基础的计算资源定价策略。该策略主要用于完成云银行运行周期中定阶段的资源定价,从而实现计算资源的价格实时自动更新,避免了人为干扰的因素,最终达到资源交易参与各方利益最大化。最后,本文运用CloudSim模拟实验平台对所提出的定价策略做了简单的实验,验证了该策略能够在一般市场价格规律条件下,帮助模拟实现计算资源价格的自动调整。
[Abstract]:With the development of social economy, all fields in real life require that computers can have more powerful computing power and integrate resources more effectively and quickly.Therefore, cloud computing was conceived and brought about a revolution in computing science.Cloud computing can help improve the ability of scientific and commercial computing, and it is crucial to improve the overall competitiveness of a country.The ultimate goal of cloud computing is to share resources and services, so how to effectively price and allocate the resources in cloud computing has become an important issue for cloud computing.This paper focuses on resource pricing in cloud computing.In order to discuss the process of resource transaction, three main players are defined: resource provider, cloud bank, and resource consumer.The resource provider provides the resources for the cloud bank, the cloud bank formulates the concrete resource allocation rule and the price, the resources consumer puts forward the application request.In this paper, the economic theory is introduced to provide the theoretical basis for the formulation of resource prices. In the background of cloud bank model, a computational resource pricing strategy based on particle swarm optimization is proposed.This strategy is mainly used to complete the resource pricing in the fixed stage of the cloud bank operation cycle, thereby realizing the real-time and automatic updating of the calculated resource price, avoiding the factors of human interference, and finally maximizing the benefit of the participants in the resource transaction.Finally, this paper makes a simple experiment on the proposed pricing strategy by using CloudSim simulation experiment platform, and verifies that the strategy can help the simulation to realize the automatic adjustment of the calculated resource price under the general market price rule.
【学位授予单位】:云南大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP3;F830.3
【参考文献】
相关期刊论文 前5条
1 李婷;李晓龙;;云计算的资源管理方法研究[J];电脑与电信;2010年01期
2 范娜;云庆夏;;粒子群优化算法及其应用[J];信息技术;2006年01期
3 王希;高速网络环境下网络带宽测试算法分析[J];南昌工程学院学报;2005年03期
4 袁国骏;;浅谈云计算及其发展应用[J];实验室科学;2009年02期
5 王柏;徐六通;;云计算[J];中兴通讯技术;2010年01期
相关硕士学位论文 前1条
1 赵春燕;云环境下作业调度算法研究与实现[D];北京交通大学;2009年
,本文编号:1705399
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1705399.html