面向认知无线电的数字信号处理器体系结构技术研究
[Abstract]:The rapid development of computer and microelectronics technology has promoted the rapid innovation of communication technology. The widely used wireless communication technology is playing a more and more important role in people's work and life. At the same time, with the increasing demand for high-speed multimedia wireless communication network, wireless communication on radio. Cognitive radio is a kind of software radio with spectrum sensing and intelligent decision-making ability. It can not only improve the utilization of radio spectrum resources, but also further improve the intelligence level of communication system. Line processor adds more functions and higher computational performance requirements such as spectrum sensing, reconfigurable computing and intelligent decision-making to the needs of software radio processors. Therefore, it is of great significance to study the architecture of digital signal processor for cognitive radio in depth. With the support of the project of Technology Research and Development and several projects of National Natural Science Foundation of China, the spectrum sensing algorithm and architecture of cognitive radio, the reconfigurable baseband processor architecture of cognitive radio and the node architecture of autonomous cognitive radio are studied in depth.
1. Design and implementation of spectrum blind sensing algorithm and architecture for cognitive radio based on energy detection. Spectrum blind sensing is very important for the implementation of cognitive radio system. In order to accelerate the calculation of energy detection and adapt to the requirements of changing detection accuracy, a pipeline architecture with dynamic reconfigurable function is designed and implemented. The FFT processor can reconstruct the FFT computation between 64 and 2048 points, while maintaining good power consumption and area overhead. A two-stage energy detection algorithm is proposed. Based on this algorithm and reconfigurable FFT processor, an energy detector with adjustable detection performance is designed and implemented.
2. Architecture design and implementation of parallel real-time spectrum sensing coprocessor based on cyclostationary feature detection algorithm. Cyclic stationary feature detection is widely used in narrowband signal DOA estimation, signal recognition and radar signal parameter estimation, but its high computational complexity has limited its application as real-time signal processing. A computationally efficient parallel cyclostationary feature detection algorithm is proposed. The algorithm is mapped and implemented on a multi-core software radio processor. For 32768 sampling times at 8 MHz, the spectrum sensing time is 78.8 Ms. Based on the parallel cyclostationary feature detection algorithm, the parallel cyclostationary feature detection is designed and implemented. Based on the reconfigurable FFT processor proposed in this paper, a reconfigurable spectrum sensing coprocessor with the functions of energy sensing and cyclostationary feature detection is designed and implemented, which realizes the balance of spectrum sensing performance and power consumption. Balance.
3. Architecture design and implementation of a reconfigurable baseband processor for cognitive radio. Reconfigurable baseband processing for cognitive radio poses a new challenge to digital signal processors. A cognitive radio baseband system model is proposed. The computational characteristics of baseband processing based on NC-OFDM transmission technology are analyzed. A reconfigurable architecture model for baseband processing applications is proposed, and a reconfigurable multiprocessor architecture CORA based on this model is designed and implemented. The experimental results show that the architecture design can meet the requirements of baseband processing computation in cognitive radio based on NC-OFDM technology.
4. The conceptual model of autonomous cognitive radio, the prototype design and implementation of cognitive circle and node architecture of autonomous cognitive radio. The conceptual model of autonomous cognitive radio (ACR) and the cognitive circle of autonomous cognitive radio (ACR) are proposed. The functions and detailed definitions of related components of the conceptual model of autonomous cognitive radio (ACR) are given. Based on ACE Toolkit, an autonomous cognitive radio simulation environment is designed and implemented. The point architecture prototype ACRA maps the cognitive radio function definition stipulated in IEEE 802.22 protocol onto ACRA. The experimental results show that ACRA is reasonable in spectrum management and has superiority in spectrum sensing performance.
In summary, this paper studies the architecture technology of digital signal processor for cognitive radio, proposes the spectrum sensing coprocessor for cognitive radio, the baseband processing model for cognitive radio, the reconfigurable baseband processor, and the architecture model and prototype implementation of autonomous cognitive radio nodes. The research and architecture implementation of mobile cognitive radio is of great significance and value.
【学位授予单位】:国防科学技术大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:TN925;TP332
【相似文献】
相关期刊论文 前10条
1 刘佳;马惠珠;;基于二阶循环统计量的频谱感知方法[J];应用科技;2009年01期
2 张新春;何世彪;胡智伦;;基于图论的动态频谱分配[J];无线通信技术;2010年01期
3 朱华进;赵晶;曹诚;;认知无线电在电磁频谱管理中的应用[J];科技资讯;2010年10期
4 魏飞;杨震;;一种基于跳预约多址接入认知无线MAC协议[J];江苏通信技术;2006年06期
5 郭阳;王衍文;;认知无线电技术及其政策影响和市场前景预测[J];中兴通讯技术;2007年03期
6 邓韦;朱琦;;认知无线电系统中频谱感知方法的研究[J];通信技术;2007年11期
7 赵陆文;周志杰;缪志敏;惠毅;;浅析认知无线电在军事通信中的应用[J];无线通信技术;2007年04期
8 殷志勇;;动态频谱分配——认知无线电中的关键技术[J];黑龙江科技信息;2008年16期
9 赵陆文;缪志敏;黄炳刚;;一种新的认知无线电资源管理信道[J];兰州大学学报(自然科学版);2008年S1期
10 向春钢;何世彪;;认知无线电中的一种分散协作频谱感知技术[J];移动通信;2008年10期
相关会议论文 前10条
1 罗凡;陈金鹰;;认知无线电在震后应急通信中的应用[A];四川省通信学会2008年学术年会论文集[C];2008年
2 周骥;;浅谈认知无线电在军事领域的应用[A];四川省通信学会2010年学术年会论文集[C];2010年
3 彭开志;杨平;王书诚;;认知无线电在通信系统中应用研究[A];2011船舶电气及通讯导航技术发展论坛论文集[C];2011年
4 刘庆军;毕少筠;孙进;刘天雄;;认知无线电技术在卫星导航系统中的应用前景[A];第三届中国卫星导航学术年会电子文集——S09组合导航与导航新方法[C];2012年
5 李俊葶;陈金鹰;刘庆丰;徐广伟;;浅谈认知无线电[A];四川省通信学会2008年学术年会论文集[C];2008年
6 郝才勇;;基于认知无线电的频谱管理策略[A];2011全国无线及移动通信学术大会论文集[C];2011年
7 刘庆丰;陈金鹰;李俊葶;卓有福;;基于认知无线电的高效频谱利用技术[A];四川省通信学会2008年学术年会论文集[C];2008年
8 徐聪;宋志群;刘芳;;认知无线电中频谱分配方法的研究[A];2010年通信理论与信号处理学术年会论文集[C];2010年
9 苏胤杰;蒋铃鸽;何晨;;基于协作通信的认知无线电中继有效位置分析[A];2010年通信理论与信号处理学术年会论文集[C];2010年
10 王玲;彭启琮;周婉婷;魏飞鸣;;基于主用户历史行为的认知无线电自适应检测算法[A];2010年通信理论与信号处理学术年会论文集[C];2010年
相关重要报纸文章 前10条
1 本报记者 卢子月;认知无线电让网络不再拥挤[N];通信产业报;2011年
2 特约撰稿人 吴康迪;日本4G路线明晰 “催熟”新技术[N];通信产业报;2009年
3 江苏泰州市无线电管理办公室 刘浏 窦沛沛;认知无线电整合“闲散”频谱[N];通信产业报;2009年
4 本报记者 朱杰;无线频谱资源的优化者[N];中国计算机报;2010年
5 本报记者 卢子月;无线似水 应需而动[N];通信产业报;2011年
6 记者 解悦 通讯员 樊忠卫;未来手机会智能“寻网”[N];南京日报;2008年
7 本报记者 江东洲 刘昊 通讯员 王源林;集聚电子信息学科优势 助推广西经济社会发展[N];科技日报;2008年
8 工业和信息化部通信科技委副主任 陈如明;未来通信频率规划管理四大策略[N];通信产业报;2009年
9 上海无线通信研究中心研发一部部长 胡宏林;2015年4G将进入商用期[N];通信产业报;2009年
10 本报记者 孟祥初;提高频谱利用率迫在眉睫[N];通信产业报;2009年
相关博士学位论文 前10条
1 贺新颖;基于支持向量机的认知无线电若干关键技术研究[D];北京邮电大学;2009年
2 张国斌;认知无线电系统资源管理与分配关键技术研究[D];华南理工大学;2011年
3 杨磊;认知无线电系统中若干关键技术的研究[D];大连理工大学;2012年
4 裴二荣;认知无线电网络中的资源优化分配的研究[D];电子科技大学;2012年
5 胡富平;基于能量检测的认知无线电协作频谱检测研究[D];华中科技大学;2010年
6 王思野;认知无线电网络中协作通信和频谱管理的研究[D];北京邮电大学;2011年
7 伍春;认知无线电中智能学习技术研究[D];西安电子科技大学;2014年
8 林威;基于认知无线电技术的频谱资源利用研究[D];哈尔滨工业大学;2010年
9 王士显;面向认知无线电的数字信号处理器体系结构技术研究[D];国防科学技术大学;2013年
10 马志W
本文编号:2236243
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2236243.html