云环境下资源调度策略的研究与分析
[Abstract]:Since the concept of cloud computing was put forward, it has triggered a global research and development boom, and many new cloud products have been launched into the market. Cloud computing is an on-demand computing model following distributed processing, parallel processing, grid computing, common computing and virtualization computing. Cloud computing abstracts the underlying physical resources of the data center into virtual units using virtualization technology and provides various services according to the needs of users. In order to meet the increasing demand of users, data center as an important carrier of cloud computing is expanding at high speed. With the increasing of IT devices, cloud resource providers and enterprises have to consider data center energy consumption, resource utilization, system performance. Quality of service, load, cost control and so on. At present, the research on resource scheduling in cloud computing has several main directions: resource scheduling aiming at improving performance, resource scheduling aiming at improving quality of service, and resource scheduling centered on economic principle. Resource scheduling aims at improving resource utilization, resource scheduling aiming at reducing energy consumption, and resource scheduling aiming at balancing load. There are many resource types in cloud systems, such as CPU, memory, hard disk, network bandwidth, I / O devices and so on, and the resources in the system are dynamic. Users submit tasks to the cloud, and the number of tasks submitted by each user is different, and the types of requirements for resources and the number of requirements for each type of resources are different for each task. The interests of users and cloud providers are different in cloud systems. A good resource scheduling strategy needs to balance the interests of each participant. In this paper, we design a fair allocation strategy based on preference, FABP (Fair allocation strategy based on preference), which gives the definitions of user priority and task priority, and uses the theory of stable matching to solve the problem of virtual machine placement. The algorithm firstly locates a user through the priority of the user and then selects the corresponding task according to the priority of the task to process the task. In the aspect of resource allocation, the preference relationship between task and physics machine is established first, then the task is placed on the most suitable physical machine by using the theory of stable matching, so as to reduce the occurrence of resource fragment. Experimental results show that the algorithm can not only shorten the average task scheduling time, but also ensure the fairness of users and tasks in the task scheduling process. Thus ensuring the interests of cloud resource providers.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP3
【参考文献】
相关期刊论文 前10条
1 刘宝平;;数据中心网络的体系结构及发展[J];西部皮革;2016年16期
2 张玉清;王晓菲;刘雪峰;刘玲;;云计算环境安全综述[J];软件学报;2016年06期
3 薛涛;马腾;;基于资源权重最大资源利用率的动态资源调度算法[J];计算机应用研究;2016年05期
4 周丽娟;王春影;;基于粒子群优化算法的云计算资源调度策略研究[J];计算机科学;2015年06期
5 王金海;黄传河;王晶;何凯;史姣丽;陈希;;异构云计算体系结构及其多资源联合公平分配策略[J];计算机研究与发展;2015年06期
6 袁晓林;施化吉;;基于模拟退火算法的云计算资源调度模型[J];软件导刊;2015年02期
7 刘永;王新华;邢长明;王硕;;云计算环境下基于蚁群优化算法的资源调度策略[J];计算机技术与发展;2011年09期
8 葛新;陈华平;杜冰;李书鹏;;基于云计算集群扩展中的调度策略研究[J];计算机应用研究;2011年03期
9 李建锋;彭舰;;云计算环境下基于改进遗传算法的任务调度算法[J];计算机应用;2011年01期
10 陈丹伟;黄秀丽;任勋益;;云计算及安全分析[J];计算机技术与发展;2010年02期
相关博士学位论文 前2条
1 徐昕;基于博弈论的云计算资源调度方法研究[D];华东理工大学;2015年
2 黄庆佳;能耗成本感知的云数据中心资源调度机制研究[D];北京邮电大学;2014年
相关硕士学位论文 前3条
1 戚建国;基于云计算的大数据安全隐私保护的研究[D];北京邮电大学;2015年
2 张丽梅;基于负载均衡的云资源调度策略研究[D];宁夏大学;2014年
3 王梅;云计算环境中的资源调度策略研究及仿真分析[D];浙江师范大学;2013年
,本文编号:2239906
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2239906.html