基于能耗数据的嵌入式系统内存压缩技术的研究与应用
[Abstract]:Energy is an indispensable material foundation for the development of human society, but the situation of energy shortage is becoming more and more serious. Therefore, social and national policies actively advocate energy conservation and emission reduction. Construction, completed the North-South campus of a total of 129 buildings nearly 1 million square meters of various building energy consumption measurement projects, to achieve intelligent real-time monitoring of energy consumption, energy consumption statistics and other functions.
The data transfer station in the physical architecture of the energy consumption monitoring platform is mainly responsible for data acquisition, data caching and data publishing of the Internet of Things (IOT), which is composed of the terminal water and electricity cooled data collector. It runs on the traditional PC server. The PC server has high hardware cost, large space occupation and large energy consumption, so the research tries to move it. Because of the large amount of data to be cached by the data transfer station and the consumption of multi-thread resources in the program, the memory resources of the embedded devices are often insufficient. Memory exchange, i.e. disk I/O, often occurs, which leads to the inefficiency of memory access and restricts the performance of the whole system. In order to alleviate this serious problem and improve the system performance of embedded devices, this paper introduces the mechanism of memory compression, designs and implements a memory compression system which can be loaded and unloaded dynamically.
The main idea of the memory compression system is to pre-allocate an area in memory as a virtual swap area and store the pages in the virtual swap area in the form of compression. The system is implemented in the form of a block device driver, which has the advantage of not modifying the source code of the kernel, and that modules can be loaded and unloaded dynamically without restarting the system. In this paper, a dictionary-based adaptive lossless compression algorithm MLZ (Mixed LZ) is designed. It is a hybrid improved algorithm based on LZ77 and LZW, supplemented by LZW algorithm as the main LZ77 algorithm, using their complementary characteristics, it reduces the scanning time and the matching time of string comparison in sliding window, and has better global and global performance. Self adaptability and higher compression ratio.
Finally, the performance of the embedded memory compression system is tested. Based on the energy consumption monitoring platform of South China University of Technology, all the energy consumption data points of South China University of Technology are taken as test worksets. Under the same system configuration, the embedded devices of using and not using memory compression system are invoked by local web service interface, respectively. The experimental results show that the memory compression system implemented in this paper achieves the performance of the system and meets the actual deployment requirements. Expected target.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP368.1
【参考文献】
相关期刊论文 前8条
1 高永丽;;信号处理中的数据压缩评价指标研究[J];楚雄师范学院学报;2008年03期
2 曾非一 ,桑楠 ,熊光泽;嵌入式系统内存管理方案研究[J];单片机与嵌入式系统应用;2005年01期
3 吴国清;陈虹;;一种科学数据无损压缩方法[J];计算机工程与应用;2006年05期
4 何克晶;;科学计算浮点数据的高性能无损压缩[J];计算机学报;2010年06期
5 于翔;数据压缩技术分析[J];青海大学学报(自然科学版);2002年05期
6 李法龙,吴刚,陈章龙;位图在嵌入式系统内存管理中的应用[J];计算机工程与设计;2005年04期
7 谭兆信;数据压缩的综合字典模型[J];计算机工程与设计;1997年01期
8 赵耀,袁保宗;数据压缩讲座──第2讲 几种常用的无失真数据压缩方法[J];中国数据通讯网络;2000年09期
相关博士学位论文 前1条
1 王刚;顾及要素特征的层次增量分块矢量数据组织与高效网络传输研究[D];武汉大学;2011年
相关硕士学位论文 前6条
1 陶宇翔;多通道数据采集系统数据压缩算法的研究与实现[D];电子科技大学;2011年
2 王韬;有压缩启动功能的Cable Modem研制[D];重庆大学;2002年
3 李江雄;嵌入式linux内存管理设计与实现[D];华中科技大学;2008年
4 夏萍;数据压缩技术的研究[D];中北大学;2010年
5 张元元;基于B-LZW算法的数据无损压缩及硬件实现[D];大连海事大学;2012年
6 黄新宇;内存数据特点与内存压缩的相关性研究[D];暨南大学;2012年
本文编号:2240413
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2240413.html