高性能硬件加速器的实现
[Abstract]:In modern complex digital signal processing, with the increasing complexity of the algorithm and the amount of data to be processed, the general-purpose processor has been unable to meet the requirements of high-speed real-time data processing in some specific applications. Heterogeneous multi-core systems can assign different computing tasks to different processor cores for parallel processing, accelerate task execution, provide a more efficient and flexible processing mechanism, and meet the needs of various applications. Hardware accelerators can improve the speed of scientific computation for specific applications. Therefore, the architecture of heterogeneous multicore system with hardware accelerator has emerged as the times require. Some multicore processors perform accelerated operations by integrating specialized accelerators for certain applications, but their flexibility is not high. With the advent of reconfigurable technology, the application of reconfigurable technology to hardware accelerators can make up for the shortcomings of performance and flexibility in general computing and software computing, and provide a better solution for complex high-speed signal processing. According to the development trend, this paper studies reconfigurable computing technology, hardware accelerator and how to integrate hardware accelerator in heterogeneous multi-core system. In this paper, the following three aspects are studied: (1) according to the requirements of the application target, the application characteristics of high-density computing are analyzed, and the characteristics of matrix algorithm are analyzed, and the high degree of parallelism is analyzed. The matrix calculation method which can improve the system performance effectively, and the algorithm of matrix operation type is optimized according to the application target and application platform. A hybrid granularity parallel matrix inversion method with in-situ substitution is obtained. (2) based on the optimization algorithm and structure, the hardware architecture of the optimized matrix inversion algorithm is proposed. A reconfigurable high performance hardware accelerator for heterogeneous multi-core systems is designed. The hardware accelerator is mainly used for matrix operations in the field of high density computing. Especially, the inverse operation of matrix can efficiently perform the inversion of real matrix with single precision of 2n within order 128. (3) based on Xilinx V6 FPGA, the experimental verification and performance analysis of the designed hardware accelerator are carried out. The integration of the hardware accelerator in heterogeneous multicore system is introduced, and the high performance of the designed accelerator is verified.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP332
【参考文献】
相关期刊论文 前7条
1 刘仲;田希;陈磊;;支持原位计算的高效三角矩阵乘法向量化方法[J];国防科技大学学报;2014年06期
2 张启英;刘亚刚;张淑艳;朱娟;;基于FPGA的硬件加速器设计的研究与应用[J];计算机光盘软件与应用;2013年17期
3 许芳;席毅;陈虹;靳伟伟;;基于FPGA/Nios-Ⅱ的矩阵运算硬件加速器设计[J];电子测量与仪器学报;2011年04期
4 周杰;陈啸洋;赵建勋;窦勇;;大矩阵QR分解的FPGA设计与实现[J];计算机工程与科学;2010年10期
5 苏涛,庄德靖,吴顺君;一种SAR成像快速算法及其并行实现[J];西安电子科技大学学报;2005年01期
6 谭道盛,温启愚;矩阵的任意分块求逆及其应用[J];四川大学学报(自然科学版);1999年01期
7 徐兰;;复数矩阵的快速Givens变换[J];华东师范大学学报(自然科学版);1988年03期
相关博士学位论文 前5条
1 李东生;基于高密度计算的多核芯片设计关键技术研究[D];合肥工业大学;2012年
2 王超;异构多核可重构片上系统关键技术研究[D];中国科学技术大学;2011年
3 邬贵明;FPGA矩阵计算并行算法与结构[D];国防科学技术大学;2011年
4 谷晓忱;并行蒙特卡罗计算硬件加速器的关键技术研究[D];国防科学技术大学;2010年
5 宋宇鲲;动态可重构协处理器研究[D];合肥工业大学;2006年
相关硕士学位论文 前6条
1 郭磊;矩阵运算的硬件加速技术研究[D];国防科学技术大学;2010年
2 邵仪;基于FPGA的矩阵运算固化实现技术研究[D];解放军信息工程大学;2010年
3 李本斋;PowerPC下H.264运动估计硬件加速器研究[D];合肥工业大学;2010年
4 陈迎春;DReNoC:基于片上网络的动态可重构计算系统研究与实现[D];合肥工业大学;2010年
5 何莹莹;基于二维网格NoC的矩阵求逆加速实现[D];合肥工业大学;2010年
6 林皓;基于FPGA的矩阵运算实现[D];南京理工大学;2007年
,本文编号:2280291
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2280291.html