信息存储系统中重复数据删除技术的研究
[Abstract]:Repeated data deletion is a kind of data lossless compression solution in network storage system. It can effectively restrain the fast growth of data storage overhead and reduce the cost of building storage system and operation management. Under the background of rapid growth of data information, repeated data deletion technology has been widely concerned by academia and industry. However, there are still many technical problems in the field of repeated data deletion, such as increasing data compression ratio, reducing processing time, optimizing data reliability and so on. In view of the above problems, this paper has carried out in-depth research from three aspects: repetitive data delete processing, data reliability in repetitive data deletion processing and data distribution strategy in storage background. Based on the theoretical analysis model and the real data set, the factors that affect the processing effect of repeated data deletion are studied. The repetition feature of target data has great influence on the effect of repeated data deletion. Therefore, a repetitive data deletion strategy based on repetition feature is proposed to optimize the data compression ratio and processing time cost. The strategy mainly includes semantic data grouping strategy and progressive data segmentation granularity decision method. According to the semantic information, the data grouping strategy based on semantics is used to distinguish the repeated features and similarity of the data and to complete the grouping operation of the target data. Progressive data segmentation granularity determination method is based on the data grouping as the unit of operation, according to the repeated characteristics of the data segmentation strategy is properly set. The experimental results show that the repetitive data deletion strategy based on repetition features has better comprehensive performance in data compression ratio and processing time than other repetitive data deletion solutions. In order to solve the problem of data reliability in repeated data deletion, an optimal redundancy calculation model is proposed to improve the reliability of target data according to the heat of reference. In order to apply the theoretical model to the real storage system, this paper optimizes the feasibility of the theoretical model by taking the sample space of the data unit to calculate the empirical value, and proposes a data redundancy strategy based on the heat of reference. The optimal redundancy is configured according to the relative attributes of the data unit (the size of the data unit and the heat of reference) to ensure the optimal data reliability of the target data set using the minimum storage cost. Simulation results demonstrate the feasibility and effectiveness of the data redundancy strategy based on citation heat. Aiming at the lack of flexibility in the current data distribution strategy, a capacity-aware data distribution strategy is proposed to improve the balance of storage load in the case of unequal storage resources between physical nodes. This strategy provides a data distribution policy solution in two cases. Without considering data redundancy, a capacity-aware distributed data strategy is proposed, which is based on the consistent hash data distribution algorithm and introduces the design idea of virtualization. Virtual node allocation method is used to allocate storage resources. The load balancing method based on node capacity awareness is used to optimize the data load distribution between physical storage nodes. Considering the data redundancy, a data distribution strategy supporting multiple redundancy is proposed, which provides flexible platform support for the data redundancy policy, and optimizes the storage load balancing degree. The simulation results show that the two data distribution strategies are helpful to improve the balance level of storage data load in their respective application background.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2012
【分类号】:TP333
【共引文献】
相关期刊论文 前10条
1 林琳;;基于C语言的存储资源管理系统的研究[J];才智;2011年13期
2 胡峰;张杰;刘静;肖大伟;;一种基于Rough集的海量数据属性约简方法[J];重庆邮电大学学报(自然科学版);2009年04期
3 刘霖;赵跃龙;李成艺;;一种新的存储解决方案——IND系统存储[J];电脑与信息技术;2006年05期
4 王丹玲;;虚拟化存储及其实现[J];电脑知识与技术;2006年05期
5 刘绍凯;;存储区域网(SAN)系统的管理及其实现研究[J];电脑知识与技术;2006年26期
6 蒋春曦;谢庆胜;王伟;;省级行业信息服务系统的设计与实现[J];电脑知识与技术;2008年17期
7 王宇;;网络存储面面观[J];电声技术;2008年05期
8 夏国远;;数据存储技术的应用分析[J];大众科技;2011年09期
9 黄晓武;;基于ISCSI的校园网络存储安全研究[J];福建电脑;2006年03期
10 王春建;;电视非编网素材的实时备份[J];广播电视信息;2011年11期
相关会议论文 前2条
1 刘景宁;王晓静;童薇;时洋;冯丹;;对象存储器中光纤通道驱动程序设计与优化[A];第15届全国信息存储技术学术会议论文集[C];2008年
2 王雪娇;钱军;温东新;张展;崔忠强;;基于Linux虚拟文件系统故障注入器的设计与实现[A];第六届中国测试学术会议论文集[C];2010年
相关博士学位论文 前10条
1 杨天明;网络备份中重复数据删除技术研究[D];华中科技大学;2010年
2 牛中盈;并行文件系统安全性研究[D];华中科技大学;2010年
3 林胜;存储系统容错及阵列编码[D];南开大学;2010年
4 陈俊健;面向对象存储系统安全技术研究[D];华中科技大学;2011年
5 彭涛;基于特征和实例的海量数据约简方法研究[D];华中科技大学;2011年
6 姜明华;基于冗余智能存储通道的存储系统关键技术研究[D];华中科技大学;2011年
7 魏青松;大规模分布式存储技术研究[D];电子科技大学;2004年
8 吴涛;虚拟化存储技术研究[D];华中科技大学;2004年
9 王烁;数字视频播放系统的研究[D];华中科技大学;2004年
10 邓玉辉;基于网络磁盘阵列的海量信息存储系统[D];华中科技大学;2004年
相关硕士学位论文 前10条
1 段莉娟;网络中间件数据采集系统的研究与实现[D];电子科技大学;2010年
2 胡永奎;对象存储设备中文件系统的设计与实现[D];解放军信息工程大学;2010年
3 王莉莉;基于DELTA压缩算法的大型数据库灾备关键技术研究[D];电子科技大学;2011年
4 柏宏斌;基于B/S架构的信息管理系统理论研究[D];电子科技大学;2010年
5 彭亮亮;基于IPv6的校园网络存储再生性的研究[D];西安电子科技大学;2010年
6 鲁昌龙;固态硬盘存储系统模型及存储管理层算法的研究[D];景德镇陶瓷学院;2011年
7 徐忠明;基于Hadoop的网络验证平台的研究[D];广东工业大学;2011年
8 蔡洪;智能网络存储系统(INSS)中负载均衡技术的研究[D];华南理工大学;2011年
9 王承才;小学校园Web网络硬盘应用系统的研究及实现[D];华南理工大学;2011年
10 罗浩;基于P2P的分布式存储研究与实现[D];电子科技大学;2011年
本文编号:2316231
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2316231.html