云环境中虚拟机迁移策略的研究
发布时间:2018-11-21 20:13
【摘要】:保证用户的服务等级协议(SLA)与能源的高效利用是目前云计算极为关注的两大重点问题。虚拟化技术是云计算资源管理中的关键技术,其中,虚拟机迁移技术和策略都是极为引人关注的问题,本文将虚拟机迁移策略的优化作为研究的首要目标。 针对如何有效降低大规模云数据中心的能量消耗并在一定程度上保证用户的服务等级协议(SLA)的问题,本文提出一种基于虚拟机迁移的优化算法LBES (Load Balancing and Energy Saving)。该算法综合考虑多种资源负载情况以及群聚冲突等问题,针对虚拟机迁移时机的确定,提出了基于预测模型的触发策略;针对待迁移物理机中存在的虚拟机群选择哪部分虚拟机进行迁移,提出了多资源约束的选择策略;并使用基于概率模型的定位策略解决了目标节点的选取问题。并在云模拟器中模拟的虚拟云数据中心对LEBS算法进行实现与分析。 实验结果表明,在相同的阈值设置条件下,LEBS算法比其它算法在保证用户的服务等级和节约能耗方面的性能更优。
[Abstract]:To ensure the service level agreement (SLA) and the efficient use of energy are two important issues in cloud computing. Virtualization technology is the key technology in cloud computing resource management, among which, virtual machine migration technology and strategy are very interesting issues, this paper takes the optimization of virtual machine migration strategy as the primary goal of the research. Aiming at how to reduce the energy consumption of large scale cloud data center and ensure the service level protocol (SLA) of users to a certain extent, this paper proposes an optimization algorithm LBES (Load Balancing and Energy Saving). Based on virtual machine migration. The algorithm considers various resource loads and cluster conflicts, and proposes a trigger strategy based on prediction model to determine the migration opportunity of virtual machine. According to which part of virtual machines are selected for migration in physical machines to be migrated, a multi-resource constrained selection strategy is proposed, and the problem of selecting target nodes is solved by using the location strategy based on probability model. The LEBS algorithm is implemented and analyzed in the virtual cloud data center simulated in the cloud simulator. The experimental results show that the performance of LEBS algorithm is better than that of other algorithms in ensuring the service level of users and saving energy consumption under the same threshold setting condition.
【学位授予单位】:中南大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP302
本文编号:2348152
[Abstract]:To ensure the service level agreement (SLA) and the efficient use of energy are two important issues in cloud computing. Virtualization technology is the key technology in cloud computing resource management, among which, virtual machine migration technology and strategy are very interesting issues, this paper takes the optimization of virtual machine migration strategy as the primary goal of the research. Aiming at how to reduce the energy consumption of large scale cloud data center and ensure the service level protocol (SLA) of users to a certain extent, this paper proposes an optimization algorithm LBES (Load Balancing and Energy Saving). Based on virtual machine migration. The algorithm considers various resource loads and cluster conflicts, and proposes a trigger strategy based on prediction model to determine the migration opportunity of virtual machine. According to which part of virtual machines are selected for migration in physical machines to be migrated, a multi-resource constrained selection strategy is proposed, and the problem of selecting target nodes is solved by using the location strategy based on probability model. The LEBS algorithm is implemented and analyzed in the virtual cloud data center simulated in the cloud simulator. The experimental results show that the performance of LEBS algorithm is better than that of other algorithms in ensuring the service level of users and saving energy consumption under the same threshold setting condition.
【学位授予单位】:中南大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP302
【参考文献】
相关期刊论文 前10条
1 张若英,邱雪松,孟洛明;SLA的表示方法和应用[J];北京邮电大学学报;2003年S2期
2 汪德帅;张一川;张斌;刘莹;;支持多租约SaaS应用按需服务的负载均衡策略[J];东北大学学报(自然科学版);2011年03期
3 金海;邓莉;吴松;石宣化;周理科;;一种能耗感知的虚拟集群CPU资源自动再配置方法[J];计算机研究与发展;2011年07期
4 董耀祖;周正伟;;基于X86架构的系统虚拟机技术与应用[J];计算机工程;2006年13期
5 刘媛媛;高庆一;陈阳;;虚拟计算环境下虚拟机资源负载均衡方法[J];计算机工程;2010年16期
6 李强;郝沁汾;肖利民;李舟军;;云计算中虚拟机放置的自适应管理与多目标优化[J];计算机学报;2011年12期
7 闫斌,徐红兵,周小佳,洪波;高可用性集群数据库服务器研究与实现[J];计算机应用研究;2005年12期
8 薛志峰,江亿;商业建筑的空调系统能耗指标分析[J];暖通空调;2005年01期
9 陈康;郑纬民;;云计算:系统实例与研究现状[J];软件学报;2009年05期
10 谭一鸣;曾国荪;王伟;;随机任务在云计算平台中能耗的优化管理方法[J];软件学报;2012年02期
,本文编号:2348152
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2348152.html