基于资源预测的智能终端资源缓存算法
发布时间:2019-01-16 03:49
【摘要】:针对智能电视终端应用间资源竞争导致的系统性能下降问题,基于资源消耗预测,提出一种智能终端资源缓存算法。根据系统记录的各应用程序的资源消耗统计数据,应用Markov模型预测下一时间段可能出现的资源瓶颈和应用的资源状态,利用应用的资源状态动态调整应用权重,并以最小化应用切换时间为目标,将资源缓存问题转化为多维多选择背包问题,采用轻量级的启发式算法求解资源缓存问题。仿真实验结果表明,在智能终端中该算法对于资源消耗的预测精确度比其他算法提高5.4%,而应用响应时间缩短约45%。
[Abstract]:Aiming at the degradation of system performance caused by resource competition among intelligent TV terminal applications, an intelligent terminal resource cache algorithm is proposed based on resource consumption prediction. According to the resource consumption statistics of each application program recorded by the system, the Markov model is used to predict the resource bottleneck and the application resource state in the next time period, and the application weight is dynamically adjusted by the application resource state. Aiming at minimizing the application switching time, the resource cache problem is transformed into a multi-dimensional multi-selection knapsack problem, and a lightweight heuristic algorithm is used to solve the resource cache problem. Simulation results show that the prediction accuracy of the algorithm for resource consumption in intelligent terminals is 5.4 higher than that of other algorithms, while the application response time is shortened by about 45%.
【作者单位】: 中国科学院声学研究所国家网络新媒体工程技术研究中心;中国科学院大学;
【基金】:国家科技支撑计划基金资助项目“电视商务综合体新业态运营支撑系统开发”(2012BAH73F01) 中国科学院先导专项课题基金资助项目“智能电视平台与服务支撑环境研制”(XDA06040501)
【分类号】:TP333
[Abstract]:Aiming at the degradation of system performance caused by resource competition among intelligent TV terminal applications, an intelligent terminal resource cache algorithm is proposed based on resource consumption prediction. According to the resource consumption statistics of each application program recorded by the system, the Markov model is used to predict the resource bottleneck and the application resource state in the next time period, and the application weight is dynamically adjusted by the application resource state. Aiming at minimizing the application switching time, the resource cache problem is transformed into a multi-dimensional multi-selection knapsack problem, and a lightweight heuristic algorithm is used to solve the resource cache problem. Simulation results show that the prediction accuracy of the algorithm for resource consumption in intelligent terminals is 5.4 higher than that of other algorithms, while the application response time is shortened by about 45%.
【作者单位】: 中国科学院声学研究所国家网络新媒体工程技术研究中心;中国科学院大学;
【基金】:国家科技支撑计划基金资助项目“电视商务综合体新业态运营支撑系统开发”(2012BAH73F01) 中国科学院先导专项课题基金资助项目“智能电视平台与服务支撑环境研制”(XDA06040501)
【分类号】:TP333
【共引文献】
相关期刊论文 前3条
1 徐超;曾学文;郭志川;;CARA:一种采用组合拍卖的智能电视终端多资源分配机制[J];西安交通大学学报;2013年10期
2 陈磊;王嵩;吴刚;;TVOS中资源分配建模与优化[J];小型微型计算机系统;2014年04期
3 桓自强;倪宏;胡琳琳;郭志川;;AAFSA-RA:一种采用高级人工鱼群算法的多资源分配方法[J];西安交通大学学报;2014年10期
【相似文献】
相关期刊论文 前10条
1 侯勇;吾守尔·斯拉木;吐尔根·伊布拉音;周艳慧;张凯;;大规模在线课程非专用资源预测与查询调度[J];计算机工程与应用;2009年36期
2 刘钊;黄罡;张颖;梅宏;;一种自动化的资源按需管理方法[J];北京大学学报(自然科学版);2009年05期
3 熊辉;王川;;云应用分类与基于预测的细粒度云资源提供[J];计算机应用;2013年06期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相关博士学位论文 前1条
1 王Z,
本文编号:2409430
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2409430.html