基于DM642车辆视频检测器
[Abstract]:Vehicle is the most important part of urban road traffic, so the research of vehicle video detector is of great significance to the development of urban intelligent transportation system. With the increasing demand of intelligent transportation system for miniaturization, low power consumption, low cost, stability and reliability, the research of embedded vehicle video detector has important practical significance and application value. In this paper, based on the digital signal processor (DSP) TMS320DM642 platform of TI Company, the embedded vehicle video detection algorithm is studied, and the embedded video vehicle detector is designed and implemented. The main contents and research results of the paper include: 1. Embedded algorithm design: in the framework of virtual coil algorithm, this paper introduces simple statistics such as speed, variance and mean, and proposes a fast video vehicle detection algorithm based on virtual coil statistics. Firstly, the virtual coil velocity statistics are calculated based on the block matching principle, and then the background modeling is carried out by using the high-order statistics block method, and the mean and variance statistics of the foreground image are obtained. Finally, the logical operation of statistics is used to judge the state of vehicle arrival, passing, leaving, stopping and so on. On the premise of meeting the real-time requirements, the algorithm has strong robustness to the interference of light, shadow and other external conditions, and is suitable for running on embedded platforms. The experimental results show that the detection speed of the algorithm can reach 50 frames per second on PC, and the detection rate can reach 98% in daytime and 93% in night under ideal conditions. When the vehicles are dense and shaded during the day, the detection rate reaches 94%, which meets the actual demand. 2. Program implementation and optimization: this paper takes the vehicle detection algorithm based on virtual coil statistics as the software core, and implements the embedded video vehicle detector on DM642 platform. The program is optimized by using inline function, expanding loop, rearranging software pipeline, using ping-pong mechanism to transmit data and so on. The test results of the actual road show that the embedded vehicle detector developed in this paper can achieve the detection speed of 20 frames per second and achieve real-time detection. At the same time, the vehicle detection rate can reach 96% during the day and 90% at night. The false detection rate is not more than 2% during the day, the missed detection rate is 4% during the day, the false detection rate is not more than 4% at night, and the missed detection rate is 10% at night. The test results show that the video vehicle detector based on DM642 can detect the vehicle in real time, at the same time, it also ensures the accuracy of the detection, and performs well in the balance between the detection speed and the detection rate. It lays a certain foundation for the development and application of embedded video vehicle detector in the future.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:U495;TP368.1
【参考文献】
相关期刊论文 前10条
1 张玲,陈丽敏,何伟,郭磊民;基于视频的改进帧差法在车流量检测中的应用[J];重庆大学学报(自然科学版);2004年05期
2 宋胜利;曾峦;;DSP/BIOS在数字图像处理中的应用[J];国外电子测量技术;2005年12期
3 艾红;孙硕;;红外测量在车流量监测中的应用[J];红外技术;2008年04期
4 盛翊智,谢寒生,李炳基,黄琼;基于快速匹配算法的虚拟线圈设计[J];华中科技大学学报(自然科学版);2004年03期
5 王亮,胡卫明,谭铁牛;人运动的视觉分析综述[J];计算机学报;2002年03期
6 刘海峰,郭宝龙,冯宗哲;用于块匹配运动估值的正方形-菱形搜索算法[J];计算机学报;2002年07期
7 王圣男,郁梅,蒋刚毅;智能交通系统中基于视频图像处理的车辆检测与跟踪方法综述[J];计算机应用研究;2005年09期
8 马枫;张庆英;;基于以太网的超声波车流量自动检测系统设计[J];武汉理工大学学报(交通科学与工程版);2007年01期
9 何伟;陈彬;张玲;;DSP/BIOS在基于DM642的视频图像处理中的应用[J];信息与电子工程;2006年01期
10 魏武,张起森,王明俊,黄中祥;基于计算机视觉和图像处理的交通参数检测[J];信息与控制;2001年03期
相关硕士学位论文 前8条
1 丁莉雅;基于视频图像处理的交通信息采集系统[D];浙江大学;2003年
2 万文静;基于光流的图像目标跟踪方法研究[D];西北工业大学;2006年
3 王卫岳;基于TMS320DM642的车牌识别系统[D];浙江大学;2007年
4 朱克忠;基于光流法对移动目标的视频检测与应用研究[D];合肥工业大学;2007年
5 高鹏;基于嵌入式的监测监控系统硬件开发与实现[D];北京邮电大学;2007年
6 李天长;基于DM642的嵌入式实时图像处理的研究[D];重庆大学;2008年
7 钱毅;基于3G标准的嵌入式网络视频监控系统设计与实现[D];厦门大学;2008年
8 赵克栋;视频监控系统设计与工程应用[D];北京邮电大学;2009年
,本文编号:2481928
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2481928.html