Collaborative deep learning across multiple data centers
发布时间:2020-12-19 16:36
Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practice, however, it is often infeasible to transfer all data of different organizations to a centralized data center owing to the constraints of privacy regulations. It is very challenging to conduct the geo-distributed deep learning among data centers without the privacy leaks. Model a...
【文章来源】:Science China(Information Sciences). 2020年08期
【文章页数】:11 页
【参考文献】:
期刊论文
[1]Generative API usage code recommendation with parameter concretization[J]. Chi CHEN,Xin PENG,Jun SUN,Zhenchang XING,Xin WANG,Yifan ZHAO,Hairui ZHANG,Wenyun ZHAO. Science China(Information Sciences). 2019(09)
[2]Two-stage local constrained sparse coding for fine-grained visual categorization[J]. Lihua GUO,Chenggang GUO,Lei LI,Qinghua HUANG,Yanshan LI,Xuelong LI. Science China(Information Sciences). 2018(01)
本文编号:2926228
【文章来源】:Science China(Information Sciences). 2020年08期
【文章页数】:11 页
【参考文献】:
期刊论文
[1]Generative API usage code recommendation with parameter concretization[J]. Chi CHEN,Xin PENG,Jun SUN,Zhenchang XING,Xin WANG,Yifan ZHAO,Hairui ZHANG,Wenyun ZHAO. Science China(Information Sciences). 2019(09)
[2]Two-stage local constrained sparse coding for fine-grained visual categorization[J]. Lihua GUO,Chenggang GUO,Lei LI,Qinghua HUANG,Yanshan LI,Xuelong LI. Science China(Information Sciences). 2018(01)
本文编号:2926228
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2926228.html