基于蚁群系统算法的流程工业生产调度研究
发布时间:2018-01-22 18:08
本文关键词: 流程工业 蚁群系统 生产调度 信息素 优化算法 出处:《广西大学》2011年硕士论文 论文类型:学位论文
【摘要】:生产调度在流程工业中占有及其重要的地位,但由于流程工业生产中有大量不确定性因素存在,从而导致了调度与控制优化脱节的现象比较严重,使生产失去了均衡性与协调性,增加了企业成本和降低了生产效益。因此,要以获得工程满意解的实际需求出发,充分考虑企业各类因素影响,选取调度目标、合理简化约束、减少参数和变量,选择能满足应用要求、快速、有效的优化算法[1],设计出充分结合企业自身特点的、实用、有效的调度支持系统。 本文的主要工作是: (1)分析流程工业调度的现状、流程工业的特点和分类以及在大规模生产调度中存在的问题和常用的解决方法,并在此基础上,建立以总加工完成时间最短为优化目标的生产调度模型。 (2)研究蚁群系统算法的特点及应用。找到确定蚁群系统的蚁群搜索策略、启发式信息策略、信息素更新机制和加工步骤开始时间等问题的方法。 (3)针对流程工业的生产调度问题特点,采用MATLAB进行编程设计相应的蚁群系统算法,结合某化妆品生产企业香水和花露水的具体生产任务,实现2种产品4个任务的生产调度。并将调度结果与基于随机调度算法生成的调度方案进行比较,主要通过对实验结果甘特图以及由此确定的加工设备利用率的比较,展示了蚁群系统算法调度的优越性,即基于蚁群系统算法的调度方案各任务的最大完工时间最小而且设备利用率高,仿真结果理想。由此可见,基于蚁群系统算法的生产调度系统能够对生产过程中的各个相互冲突目标进行解耦,获得全局优化。从而进一步验证本文所建立的调度模型和设计的算法有较好的调度性能,以及应用蚁群系统算法的可行性和正确性。 基于蚁群系统算法的生产调度结果能够为管理人员提供较合理的生产调度计划,帮助企业提高生产效率和资源利用率,具有一定的实际参考价值。
[Abstract]:Production scheduling plays an important role in the process industry, but there are a lot of uncertain factors in the process industry, which leads to the disconnection between scheduling and control optimization. The production lost its balance and coordination, increased the cost of the enterprise and reduced the efficiency of production. Therefore, based on the actual demand of obtaining the satisfactory solution of the project, we should fully consider the influence of various factors of the enterprise and select the scheduling target. Reasonable simplification of constraints, reduction of parameters and variables, selection can meet the requirements of the application, fast and effective optimization algorithm. [1. A practical and effective scheduling support system is designed which fully combines the characteristics of the enterprise itself. The main work of this paper is: 1) analyze the status quo of process industry scheduling, the characteristics and classification of process industry, the problems existing in large-scale production scheduling and common solutions, and on this basis. A production scheduling model with the shortest total processing time as the optimization objective is established. 2) the characteristics and application of ant colony system algorithm are studied, and the methods of determining ant colony search strategy, heuristic information strategy, pheromone updating mechanism and the starting time of processing steps are found. According to the characteristics of production scheduling problem in process industry, MATLAB is used to program and design the corresponding ant colony system algorithm, combined with the specific production tasks of perfume and dew water in a cosmetic production enterprise. The scheduling results of two kinds of products with four tasks are compared with the scheduling scheme based on stochastic scheduling algorithm. The advantages of ant colony system scheduling are demonstrated by comparing the Gantt diagram and the processing equipment utilization ratio. That is, the scheduling scheme based on ant colony system algorithm has the minimum maximum completion time and high equipment utilization, so the simulation results are ideal. The production scheduling system based on ant colony system algorithm can decouple the conflicting targets in the production process. The global optimization is obtained, which further verifies the good scheduling performance of the scheduling model and the designed algorithm, and the feasibility and correctness of the application of the ant colony system algorithm. The result of production scheduling based on ant colony system algorithm can provide reasonable production scheduling plan for managers and help enterprises to improve production efficiency and resource utilization, which has certain practical reference value.
【学位授予单位】:广西大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH186
【参考文献】
相关期刊论文 前10条
1 何荥;林勇;翁季;;用蚁群系统研究天空亮度分布模型[J];重庆大学学报;2009年07期
2 杨波;万仲平;尹德玉;;资源约束项目排序问题的一种修正蚁群算法[J];工程数学学报;2007年03期
3 赵小强,荣冈;流程工业生产调度问题综述[J];化工自动化及仪表;2004年06期
4 李将军;叶仲泉;宫子风;;改进蚁群算法及其仿真研究[J];计算机应用;2008年S2期
5 胡小兵,黄席樾;蚁群优化算法及其应用[J];计算机仿真;2004年05期
6 李玉刚;国纲;孔令启;郑世清;;基于设备故障的间歇化工过程反应型调度[J];计算机与应用化学;2008年04期
7 余建军;张定超;周铭新;;生产调度研究综述[J];中国制造业信息化;2009年17期
8 鄢烈祥;史彬;李慧玲;鄢晓;;资源受限的发酵生产过程调度优化[J];武汉理工大学学报(信息与管理工程版);2008年02期
9 张利平;吴正佳;王魁;王文;;改进蚁群算法在车间作业调度中的应用研究[J];三峡大学学报(自然科学版);2009年02期
10 叶强;刘心报;程浩;;改进蚁群算法求解单机总加权延迟调度问题[J];系统仿真学报;2008年08期
,本文编号:1455386
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1455386.html