超精密铣削加工工件表面形貌的仿真与纹理控制
[Abstract]:For ultra-precision milling parts, the surface topography will affect the surface roughness evaluation and other surface properties. In this paper, a three-dimensional surface topography simulation algorithm suitable for Ultra-precision milling accuracy and simulation efficiency is established according to the surface topography characteristics of ultra-precision milling parts. The surface topography and composition texture are studied. The influence of machining parameters and initial cutting tool phase angle on the surface topography is obtained. A method to generate specific surface topography is established by planning tool path and machining parameters.
In this paper, under the condition of ultra-precision milling, the formation mechanism of surface topography of ball-end cutter is studied. Based on the method of sweeping point cloud, a three-dimensional surface topography model and simulation algorithm for Ultra-precision milling is established. According to this algorithm, the surface topography and texture are studied and the corresponding texture is controlled. In the process of machining, the 3D surface topography is expressed by discrete point cloud data. According to the information of machining surface and the number of sampling points, the simulation area is divided and the servo containment box is established.
On the basis of this algorithm, the relationship between the feed per turn, tool inclination and the initial cut-in phase angle of the tool and the surface topography is studied by simulation and experiment respectively. Ringing.
By studying the influence of machining parameters and tool initial phase angle on surface topography and texture, a method to control the formation of surface topography and texture is established from two aspects of planning machining parameters and tool path. Finally, the surface topography is realized on the actual workpiece through the process planning, and the goal of controlling the surface topography and texture composition is achieved through the planning of processing strategy.
The simulation and experimental results show that the simulation algorithm can characterize the bi-directional residual height of the workpiece surface and reflect the influence of the cutting tool cutting phase angle on the surface topography.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TG54;TH161.1
【参考文献】
相关期刊论文 前10条
1 M.Weck,S.Fische,彭莉;超精密铣削机床的开发[J];国防科技参考;1997年03期
2 K.Sawada,T.Kawai,彭莉;超精密铣削的三维微加工工艺[J];国防科技参考;1997年03期
3 李圣怡,戴一帆,彭小强;超精密加工机床及其新技术发展[J];国防科技大学学报;2000年02期
4 尹自强,李圣怡;振动影响下金刚石车削表面的形貌仿真[J];国防科技大学学报;2003年01期
5 黎永明,刘建国;超精密机床的发展及其关键技术[J];上海机械学院学报;1994年02期
6 陈东祥;田延岭;;超精密磨削加工表面形貌建模与仿真方法[J];机械工程学报;2010年13期
7 高彤,张卫红,邱克鹏,万敏;周铣加工表面形貌仿真新算法[J];西北工业大学学报;2004年02期
8 袁哲俊,周明,韩向利;超精密机床的新发展(上)[J];机械工艺师;1994年11期
9 袁哲俊,周明,韩向利;超精密机床的新发展(下)[J];机械工艺师;1994年12期
10 李荣彬,张志辉,李建广;超精密加工的三维表面形貌预测[J];中国机械工程;2000年08期
相关博士学位论文 前5条
1 王淑珍;基于白光干涉超精密表面形貌测量方法与系统研究[D];华中科技大学;2010年
2 尹自强;超精密直线度测量及表面微观形貌分析研究[D];国防科学技术大学;2003年
3 李红涛;介观尺度材料力学性能建模及微铣削工艺优化研究[D];上海交通大学;2008年
4 郧建平;基于白光干涉的表面形貌接触和非接触两用测量系统的研究[D];华中科技大学;2008年
5 周磊;微纳米动态切削系统建模及表面形貌的预测分析研究[D];哈尔滨工业大学;2009年
相关硕士学位论文 前6条
1 高彤;铣削加工表面形貌及端铣加工变形仿真研究[D];西北工业大学;2004年
2 毛瑞生;台式五轴联动超精密数控铣床的总体设计[D];哈尔滨工业大学;2006年
3 方文勇;高速数控加工表面形貌仿真研究[D];山东大学;2007年
4 胡鑫;数控磨削螺旋刃球头立铣刀前后刀面的研究[D];湖南大学;2009年
5 魏立峰;光学零件超精密铣削加工表面形貌预测与仿真[D];华中科技大学;2008年
6 陈建超;超精密加工表面粗糙度测量方法对比及功率谱密度评价[D];哈尔滨工业大学;2009年
本文编号:2229786
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2229786.html