基于分段聚类的滚动轴承故障诊断方法研究
[Abstract]:Rolling bearing is one of the most vulnerable components in rotating machinery. According to statistics, about 30% of rotating machinery failures are caused by bearing failures. Therefore, the condition monitoring and fault diagnosis of rolling bearings is of great significance. Bearing fault shock signal is a pulse waveform with short duration. This paper attempts to intercept the impact signal from the background noise and determine the source of the impact by calculating the frequency of the impact, so as to detect and diagnose the working state of the bearing. The main contents of this paper are as follows: (1) based on the mechanism of vibration signal of rolling bearing, the vibration components of bearing are discussed. And the bearing work of various factors are described. The impact pulse characteristics of different bearing components are studied. It provides theoretical basis for rolling bearing fault diagnosis. (2) the wavelet analysis method and Fourier transform analysis method are compared and analyzed. The transient detection of fault vibration signal is realized by wavelet analysis. On the basis of impulse detection, each pulse is segmented. (3) feature extraction of segmented signal, including time domain feature, frequency domain feature, wavelet packet energy feature. Because these characteristics reflect the characteristics of impulse pulses from different angles, however, the ability of different eigenvalues to reflect the properties of pulses is also different. It is necessary to introduce principal component analysis (PCA). By introducing the principle of principal component analysis (PCA) algorithm and geometric meaning, applying PCA after feature extraction, the results show that a few principal components can well reflect the properties of different impulse components. The purpose of dimension reduction is achieved. (4) the application of clustering algorithm in bearing fault diagnosis is introduced. The definition of distance, the definition of clustering criterion function and the classification of clustering algorithm are introduced in detail, and the characteristics of different clustering algorithms are compared. The influence of two parameters of fuzzy index and clustering number on the clustering results in fuzzy C-means clustering algorithm is discussed. Finally, the effectiveness of this method is verified by two simulated bearing failure experiments. One is to diagnose the single fault type of outer ring, the other is to diagnose the mixed fault type of outer ring fault and rolling body fault. This paper shows that the method of bearing fault diagnosis based on piecewise clustering is feasible, the algorithm is simple and reliable, and the accurate diagnosis of bearing is of great significance.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH133.31;TH165.3
【参考文献】
相关期刊论文 前10条
1 徐振辉,马立元;滚动轴承的故障特征提取[J];兵工自动化;2004年01期
2 贺银芝,沈松,刘正士,应怀樵;基于小波变换的奇异性检测在发动机连杆轴承故障诊断中的应用[J];北京工业大学学报;2000年04期
3 丁娜;关立行;文常保;;基于Morlet小波的滚动轴承故障信号奇异性分析[J];轴承;2006年01期
4 王启志;王晓霞;;模糊聚类在机械故障诊断中的应用[J];轴承;2008年10期
5 马家驹,,梁文梅;滚动轴承振动统计特性分析[J];轴承;1994年01期
6 范九伦,吴成茂;划分系数和总变差相结合的聚类有效性函数[J];电子学报;2001年11期
7 张中民,卢文祥,杨叔子,张英堂;滚动轴承故障振动模型及其应用研究[J];华中理工大学学报;1997年03期
8 陆爽,张子达,李萌;机械微弱振动信号检测的研究[J];机电工程;2004年07期
9 宋余庆,罗永刚,孙志挥;应用主分量分析与粗糙集处理的特征提取[J];计算机工程与应用;2004年22期
10 张勇;陈莉;;聚类与PCA融合的特征提取方法研究[J];计算机工程与应用;2010年11期
相关会议论文 前1条
1 崔宝珍;王泽兵;潘宏侠;;小波包分析和模糊聚类方法在滚动轴承故障诊断中的应用[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年
相关硕士学位论文 前4条
1 赵志宇;基于小波变换的滚动轴承故障诊断系统的研究与开发[D];大连理工大学;2005年
2 高红斌;基于静动力学的滚动轴承故障模型分析及物理模拟[D];太原理工大学;2006年
3 黄一样;基于小波理论的滚动轴承智能故障诊断方法的研究[D];中南大学;2009年
4 窦远;旋转机械故障特征提取技术及其系统研制[D];北京化工大学;2009年
本文编号:2279299
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2279299.html