基于3-RPS并联机构的自适应机翼方法实现及其测控系统研究
[Abstract]:The principle of adaptive wing technology is to change the wing shape adaptively under different mission conditions, so that the aircraft can obtain the best flight performance. As an important direction of wing development in the future, adaptive wing has been successfully applied in some fighter planes, bombers and UAVs. Since the 1980s, the major military powers in the world have taken the technology as the key strategic development direction and formulated and implemented a series of medium- and long-term plans. At present, the research of adaptive wing technology can be divided into two schools: one is to regulate the flow of non-viscous or boundary layer in the flow field effectively through the small changes of external additions or airfoils. The other is the adaptive wing technology which changes the geometric configuration of the wing on a large scale in order to obtain the optimal flight performance of the aircraft under different mission conditions. This paper focuses on the large scale wing deformation technology based on parallel mechanism. The parallel mechanism is different from the series mechanism in that it has the advantages of compact mechanism, strong bearing capacity, fast acceleration and so on. Based on the above advantages, the parallel mechanism as an adaptive wing linkage mechanism has its unique advantages. At present, large deformed adaptive wing aircraft, such as F-14, figure 160 and so on, are mostly single-degree-of-freedom deformations, but the advantage of parallel mechanism is that they often have multiple degrees of freedom. Therefore, more degrees of freedom will further expand the deformation of the adaptive wing. The traditional 3-RPS parallel mechanism is improved on the basis of 6-SPS mechanism or Stewart platform. It has three independent degrees of freedom, including two independent rotational degrees of freedom and one independent translational degree of freedom. By improving the 3-RPS mechanism, without changing its independent degree of freedom, the structure of the mechanism is closer to the wing section, and the solution of the special attitude motion is more convenient, so it can be applied to the adaptive wing linkage mechanism smoothly. The main work of this paper includes the following parts: (1) by analyzing and simplifying the six-degree-of-freedom platform and neglecting the sub-important degree of freedom, the 3-RPS mechanism is selected as the wing linkage mechanism. The classical 3-RPS mechanism is improved to make it closer to the wing section shape in the kinematic pair arrangement, which is suitable for various airfoils. (2) the development of parallel mechanism is introduced briefly. The inverse kinematics solution of the improved 3-RPS mechanism is derived, and its motion law is simply analyzed, so that the wing motion process of the mechanism as a linkage mechanism is fully understood. Then it is helpful for trajectory planning according to the actual motion effect. (3) by comparing the advantages and disadvantages of several realization methods, the implementation scheme of parallel mechanism is selected, and the physical model is made. The motion effect is verified by manual adjustment. (4) an adaptive wing measurement and control system with good visibility is developed by using NI Labview visual programming software and peripheral equipment. The whole electronic control design makes the optimization of the system upgrade simple and feasible. (5) the geometric parameters of the structure are optimized based on the workspace and the load bearing of the system is considered. The structural parts are optimized. According to the optimization results, a new design scheme is proposed.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:V224;TH112
【相似文献】
相关期刊论文 前10条
1 ;拉涨蜂窝结构用于自适应机翼[J];材料工程;2008年05期
2 李玉璞 ,孙铿 ,张宏;自适应机翼控制技术新进展[J];国际航空;2001年09期
3 韩世杰;下一代客机用自适应机翼[J];航空科学技术;1997年06期
4 刘航,朱自强,付鸿雁,吁日新;自适应与双目标优化机翼的气动特性比较[J];北京航空航天大学学报;2004年05期
5 罗翌;灵巧蒙皮与灵巧结构[J];飞航导弹;1999年02期
6 杨亮;裴承鸣;郑华;蒋珍今;;自适应机翼的神经网络控制系统设计与试验[J];计算机仿真;2009年12期
7 周金涛;;RPS在仪表板总成设计中的应用[J];汽车技术;2010年07期
8 郑华;裴承鸣;孙铁;王华朋;;自适应机翼的控制系统设计及其试验研究[J];西北工业大学学报;2006年06期
9 时爱民;;RPS在电工实验中的应用[J];电工技术;1998年07期
10 解江;杨智春;;自适应机翼柔性翼肋的受控运动学规律研究[J];机械科学与技术;2007年07期
相关会议论文 前1条
1 ;飞机结构设计及强度专业发展[A];航空科学技术学科发展报告(2006-2007)[C];2007年
相关重要报纸文章 前4条
1 水利部农村水电及电气化发展局 周鹏飞;浅析实施可再生能源配额制的必要性[N];中国水利报;2001年
2 晓关;联邦快递剥离住宅投递业务[N];中国邮政报;2000年
3 尹言;GPRS 横跨掌上市场联想打出无线王牌[N];科技日报;2002年
4 秋凌;高飞三千米,省油会像普锐斯[N];中国国防报;2010年
相关硕士学位论文 前10条
1 田鑫;基于3-RPS并联机构的自适应机翼方法实现及其测控系统研究[D];南京航空航天大学;2011年
2 聂瑞;可变弯度自适应机翼部分关键技术研究[D];南京航空航天大学;2010年
3 宋培思;基于自适应结构与智能蒙皮技术的流场主动控制仿真研究[D];南京航空航天大学;2011年
4 彭海峰;柔顺蜂窝蒙皮结构设计及研究[D];中国科学技术大学;2011年
5 郑云;自适应机翼构型的选择方法研究[D];西北工业大学;2007年
6 黄杰;基于变密度法的连续体拓扑优化技术及其应用研究[D];西北工业大学;2007年
7 管凤宝;RPS系统完善研究与新型低温甲醇洗流程开发[D];大连理工大学;2007年
8 王琪;弦向柔性机翼气动弹性分析与控制[D];南京航空航天大学;2012年
9 蒯乐;后缘无缝襟翼与前缘缝翼的一体化优化设计[D];上海交通大学;2011年
10 刘力搏;基于可变形蒙皮的柔性后缘力学分析[D];哈尔滨工业大学;2011年
,本文编号:2281561
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2281561.html