基于层次分析法的CCD像元细分算法综合评价
本文关键词:用于机械臂末端感知的激光测距传感器设计,由笔耕文化传播整理发布。
摘要
基于CCD 的激光测距传感器通过像元细分,可有效提高该类传感器的测量精度。诸多的像元细分算法,每种都有其优缺点及特定应用。然而针对特定的测距传感器,,如何综合评价哪种算法更优,尚缺乏有效手段。因此,提出了基于层次分析法的像元细分算法优劣的综合评价方法,该方法基于像元细分算法在传感器测量范围的近段、中段和远段的实际定位精度、方差和极差等指标,利用层次分析法构建综合评价模型。利用该方法,实验分析了二分法、加权质心法、加权多项式插值法和按比例求中心法等像元细分算法对特定测距传感器的适用性。实验结果表明,该方法能够有效获取适用于特定测距传感器的最优像元细分算法。
关键词
Abstract
The accuracy of laser range finder based on CCD can be effectively improved by pixel subdivision. There are mant pixel subdivision algorithms, and each has advantages and specific application. However, according to the specific range finder, there is no effective mean to evaluate which algorithm is better comprehensively. Hence, a comprehensive evaluation method is proposed, which is based on analytic hierarchy process (AHP) and is used to evaluate the pixel subdivision algorithms. This method is based on actual positioning precision, variance and range of the pixel subdivision algorithms in the proximal, the middle and the distal of measuring range of the laser range finder. And it constructs the comprehensive evaluation model by AHP. According to the method, the applicability of the dichotomy, weighted centroid, weighted polynomial interpolation and center from the proportion algorithm for the specific range finder is analyzed by experiment. The experimental results show that the method can be used to obtain the optimal pixel subdivision algorithm for specific range sensor effectively.
暂无全文如何下载
补充资料
中图分类号:TP212.14
DOI:10.3788/aos201535.0728002
所属栏目:遥感与传感器
基金项目:国家973计划(2013CB733103)
收稿日期:2015-01-21
修改稿日期:2015-03-30
网络出版日期:--
作者单位 点击查看
陈家伟:哈尔滨工业大学机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001
张元飞:哈尔滨工业大学机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001
张禹:哈尔滨工业大学机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001
谢宗武:哈尔滨工业大学机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001
联系人作者:陈家伟(chenjiawei0427@163.com)
备注:陈家伟(1991—),男,硕士研究生,主要从事机器人技术及传感器研究。
【1】Feng Weilei, Wang Fujuan, Zeng Wanqi, et al.. CCD spectrum measurement system for laser induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2013, 50(1): 013002.
冯为蕾, 王福娟, 曾万祺, 等. 应用于LIBS的CCD 光谱测量系统[J]. 激光与光电子学进展, 2013, 50(1): 013002.
【2】Ueda K, Sugie H. Point-to-point control command for suppressing residual vibration[C]. Singapore: Control, Automation, Robotics and Vision, IEEE 9th International Conference on, 2006: 1 - 6.
【3】Koch H, Konig A, Kleinmann K, et al.. Predictive robotic contour following using laser- camera- triangulation[C]. Buda pest: Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME International Conference on, 2011: 422-427.
【4】Meng Xiangqian, Hu Shunxing, Wang Zhenzhu, et al.. Vertical distribution of aerosol extinction coefficient detection in boundary layer using CCD lidar[J]. Acta Optica Sinica, 2013, 33(8): 0801003.
孟祥谦, 胡顺星, 王珍珠, 等. CCD 激光雷达探测边界层气溶胶消光系数垂直分布[J]. 光学学报, 2013, 33(8): 0801003.
【5】Ma Xiaomin, Tao Zongming, Ma Mingjun, et al.. Retrieval method of side- scatter lidar signal based on charge coupled device technique[J]. Acta Optica Sinica, 2014, 34(2): 0201001.
麻晓敏, 陶宗明, 马明俊, 等. 基于CCD 的侧向散射激光雷达信号提取方法[J]. 光学学报, 2014, 34(2): 0201001.
【6】Yang Boxiong. CCD Subdivision Technology and Its Application Research[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2005: 71-75.
杨博雄. CCD 细分技术及其应用研究[D]. 北京: 中国地震局地球物理研究所, 2005: 71-75.
【7】Liu Libo, Zhao Hui, Zhang Haibo, et al.. Research on spot subdivided locating method in laser triangulation measurement[J]. Computer Measurement & Control, 2008, 16(10): 1396-1398.
刘立波, 赵辉, 张海波, 等. 激光三角测距中光斑细分定位方法研究[J]. 计算机测量与控制, 2008, 16(10): 1396-1398.
【8】Yan Hangrui, Xiong Zhiyong. Study of the impact and correction of surface tilt upon laser triangulation[J].Optical Instruments, 2014, 36(1): 11-14.
闫航瑞, 熊志勇. 表面倾斜对激光三角测量的影响及校正研究[J]. 光学仪器, 2014, 36(1): 11-14.
【9】Xu Shubai. A Practical Decision Method: the Principle of AHP[M]. Tianjin: Tianjin University Press, 1988.
许树柏. 实用决策方法: 层次分析法原理[M]. 天津: 天津大学出版社, 1988.
【10】Guo Jinyu, Zhang Zhongbin, Sun Qingyun. Study and applications of analytic hierarchy process[J]. China Safety Science Journal, 2008, 18(5): 148-153.
郭金玉, 张忠彬, 孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报, 2008, 18(5): 148-153.
【11】Lin Guojin. Applications of analytic hierarchy process in financial risk evaluation of enterprise[J]. China Management Informationization, 2015, 18(1): 5-7.
林国金. 层次分析法在企业财务风险评估中的应用[J]. 中国管理信息化, 2015, 18(1): 5-7.
【12】Zhao Baoqing, Li Na. Study of the internal audit outsourcing decision based on analytic hierarchy process[J]. Audit & Economy Research, 2013, (1): 37-45.
赵保卿, 李娜. 基于层次分析法的内部审计外包内容决策研究[J]. 审计与经济研究, 2013, (1): 37-45.
【13】Sun Yalin, Huang Xinfang, He Yanhong, et al.. Evaluation of quality of taro with analytic hierarchy process[J]. Journal of Huazhong Agricultural University, 2015, 34(1): 16-22.
孙亚林, 黄新芳, 何燕红, 等. 运用层次分析法评价多子芋种质资源[J]. 华中农业大学学报, 2015, 34(1): 16-22.
【14】Zhang Yu, Sun Kui, Zhang Yuanfei, et al.. Design of laser range finder for end perception of robot arm[J]. Robot, 2014, 36(5): 519-526.
张禹, 孙奎, 张元飞, 等. 用于机械臂末端感知的激光测距传感器设计[J]. 机器人, 2014, 36(5): 519-526.
引用该论文
Chen Jiawei,Zhang Yuanfei,Zhang Yu,Xie Zongwu. A Comprehensive Evaluation Method Based on Analytic Hierarchy Process for CCD Pixel Subdivision Algorithms[J]. Acta Optica Sinica, 2015, 35(7): 0728002
陈家伟,张元飞,张禹,谢宗武. 基于层次分析法的CCD像元细分算法综合评价[J]. 光学学报, 2015, 35(7): 0728002
本文关键词:用于机械臂末端感知的激光测距传感器设计,由笔耕文化传播整理发布。
本文编号:98286
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/98286.html